Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Protein Sci ; 33(8): e5095, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38988315

RESUMEN

The Duffy-binding protein (DBP) is a promising antigen for a malaria vaccine that would protect against clinical symptoms caused by Plasmodium vivax infection. Region II of DBP (DBP-II) contains the receptor-binding domain that engages host red blood cells, but DBP-II vaccines elicit many non-neutralizing antibodies that bind distal to the receptor-binding surface. Here, we engineered a truncated DBP-II immunogen that focuses the immune response to the receptor-binding surface. This immunogen contains the receptor-binding subdomain S1S2 and lacks the immunodominant subdomain S3. Structure-based computational design of S1S2 identified combinatorial amino acid changes that stabilized the isolated S1S2 without perturbing neutralizing epitopes. This immunogen elicited DBP-II-specific antibodies in immunized mice that were significantly enriched for blocking activity compared to the native DBP-II antigen. This generalizable design process successfully stabilized an integral core fragment of a protein and focused the immune response to desired epitopes to create a promising new antigen for malaria vaccine development.


Asunto(s)
Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Epítopos , Vacunas contra la Malaria , Plasmodium vivax , Proteínas Protozoarias , Receptores de Superficie Celular , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Plasmodium vivax/inmunología , Animales , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/química , Epítopos/inmunología , Epítopos/química , Ratones , Anticuerpos Antiprotozoarios/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Modelos Moleculares , Malaria Vivax/inmunología , Malaria Vivax/prevención & control , Ratones Endogámicos BALB C
2.
Front Immunol ; 15: 1331474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650939

RESUMEN

Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.


Asunto(s)
Adyuvantes de Vacunas , Hidróxido de Aluminio , Inmunogenicidad Vacunal , Vacunas contra la Malaria , Malaria Vivax , Plasmodium vivax , Poli I-C , Proteínas Protozoarias , Poli I-C/administración & dosificación , Plasmodium vivax/inmunología , Inmunidad Humoral , Inmunidad Celular , Proteínas Protozoarias/inmunología , Vacunas contra la Malaria/química , Vacunas contra la Malaria/inmunología , Hidróxido de Aluminio/administración & dosificación , Inmunoglobulina G/sangre , Masculino , Animales , Células Plasmáticas/inmunología , Femenino , Ratones Endogámicos C57BL , Proteínas Recombinantes/inmunología , Vacunación , Adyuvantes de Vacunas/administración & dosificación , Malaria Vivax/prevención & control
3.
Protein Sci ; 33(1): e4852, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38059674

RESUMEN

The circumsporozoite protein (CSP) is the main surface antigen of the Plasmodium sporozoite (SPZ) and forms the basis of the currently only licensed anti-malarial vaccine (RTS,S/AS01). CSP uniformly coats the SPZ and plays a pivotal role in its immunobiology, in both the insect and the vertebrate hosts. Although CSP's N-terminal domain (CSPN ) has been reported to play an important role in multiple CSP functions, a thorough biophysical and structural characterization of CSPN is currently lacking. Here, we present an alternative method for the recombinant production and purification of CSPN from Plasmodium falciparum (PfCSPN ), which provides pure, high-quality protein preparations with high yields. Through an interdisciplinary approach combining in-solution experimental methods and in silico analyses, we provide strong evidence that PfCSPN is an intrinsically disordered region displaying some degree of compaction.


Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Vacunas contra la Malaria/química , Vacunas contra la Malaria/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química
4.
Gene ; 894: 147956, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37925116

RESUMEN

Antigenic variation associated with genetic diversity in global Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major impediment to designing an effective malaria vaccine. Here, we report the first study on genetic diversity and natural selection of the Pfama-1 gene in P. falciparum isolates from Cameroon. A total of 328 P. falciparum positive samples collected during 2016 and 2019 from five localities of Cameroon were analysed. The ectodomain coding fragment of Pfama-1 gene was amplified for polymorphism profiling and natural selection analysis. A total of 108 distinct haplotypes were found in 203 P. falciparum isolates with considerable nucleotide diversity (π = 0.016) and haplotype diversity (Hd = 0.976). Most amino acid substitutions detected were scattered in ectodomain-I and few specific mutations viz P145L, K148Q, K462I, L463F, N471K, S482L, E537G, K546R and I547F were seen only in Cameroonian isolates. A tendency of natural selection towards positive diversifying selection was observed (Taj-D = 2.058). Five positively selected codon sites (P145L, S283L, Q308E/K, P330S and I547F) were identified, which overlapped with predicted B-cell epitopes and red blood cell (RBC) binding sites, suggesting their potential implication in host immune pressure and parasite-RBC binding complex modulation. The Cameroonian P. falciparum populations indicated a moderate level of genetic differentiation when compared with global sequences, with few exceptions from Vietnam and Venezuela. Our findings provide baseline data on existing Pfama-1 gene polymorphisms in Cameroonian field isolates, which will be useful information for malaria vaccine design.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Camerún , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Proteínas de la Membrana/genética , Antígenos de Protozoos/genética , Antígenos de Protozoos/química , Polimorfismo Genético , Selección Genética , Haplotipos , Variación Genética
5.
Nature ; 612(7940): 534-539, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477528

RESUMEN

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Asunto(s)
Plasmodium falciparum , Esporozoítos , Animales , Humanos , Ratones , Culicidae/parasitología , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/biosíntesis , Vacunas contra la Malaria/química , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/patogenicidad , Hepatocitos/parasitología , Hígado/parasitología , Proteína 1 de Superficie de Merozoito , Eritrocitos/parasitología , Técnicas In Vitro
6.
J Biol Chem ; 298(9): 102241, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35809642

RESUMEN

Malaria and other apicomplexan-caused diseases affect millions of humans, agricultural animals, and pets. Cell traversal is a common feature used by multiple apicomplexan parasites to migrate through host cells and can be exploited to develop therapeutics against these deadly parasites. Here, we provide insights into the mechanism of the Cell-traversal protein for ookinetes and sporozoites (CelTOS), a conserved cell-traversal protein in apicomplexan parasites and malaria vaccine candidate. CelTOS has previously been shown to form pores in cell membranes to enable traversal of parasites through cells. We establish roles for the distinct protein regions of Plasmodium vivax CelTOS and examine the mechanism of pore formation. We further demonstrate that CelTOS dimer dissociation is required for pore formation, as disulfide bridging between monomers inhibits pore formation, and this inhibition is rescued by disulfide-bridge reduction. We also show that a helix-destabilizing amino acid, Pro127, allows CelTOS to undergo significant conformational changes to assemble into pores. The flexible C terminus of CelTOS is a negative regulator that limits pore formation. Finally, we highlight that lipid binding is a prerequisite for pore assembly as mutation of a phospholipids-binding site in CelTOS resulted in loss of lipid binding and abrogated pore formation. These findings identify critical regions in CelTOS and will aid in understanding the egress mechanism of malaria and other apicomplexan parasites as well as have implications for studying the function of other essential pore-forming proteins.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Plasmodium vivax , Proteínas Protozoarias , Sitios de Unión , Disulfuros/química , Humanos , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Fosfolípidos/inmunología , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Prolina/química , Prolina/genética , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Esporozoítos/genética , Esporozoítos/inmunología
7.
Sci Rep ; 12(1): 3040, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197516

RESUMEN

The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antiprotozoarios/química , Antígenos de Protozoos/inmunología , Proteínas Portadoras/inmunología , Línea Celular , Sinergismo Farmacológico , Epítopos/química , Epítopos/inmunología , Humanos , Vacunas contra la Malaria/química , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Ratones , Unión Proteica , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación
8.
Electrophoresis ; 43(3): 509-515, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34679212

RESUMEN

Rhoptry neck protein 2 (RON2) binds to the hydrophobic groove of apical membrane antigen 1 (AMA1), an interaction essential for invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) parasites. Vaccination with AMA1 alone has been shown to be immunogenic, but unprotective even against homologous challenge in human trials. However, the AMA1-RON2L (L is referred to as the loop region of RON2 peptide) complex is a promising candidate, as preclinical studies with Freund's adjuvant have indicated complete protection against lethal challenge in mice and superior protection against virulent infection in Aotus monkeys. To prepare for clinical trials of the AMA1-RON2L complex, identity and integrity of the candidate vaccine must be assessed, and characterization methods must be carefully designed to not dissociate the delicate complex during evaluation. In this study, we developed a native Tris-glycine gel method to separate and identify the AMA1-RON2L complex, which was further identified and confirmed by Western blotting using anti-AMA1 monoclonal antibodies (mAbs 4G2 and 2C2) and anti-RON2L polyclonal Ab coupled with mass spectrometry. The formation of complex was also confirmed by Capillary Isoelectric Focusing (cIEF). A short-term (48 h and 72 h at 4°C) stability study of AMA1-RON2L complex was also performed. The results indicate that the complex was stable for 72 h at 4°C. Our research demonstrates that the native Tris-glycine gel separation/Western blotting coupled with mass spectrometry and cIEF can fully characterize the identity and integrity of the AMA1-RON2L complex and provide useful quality control data for the subsequent clinical trials.


Asunto(s)
Antígenos de Protozoos , Vacunas contra la Malaria , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Glicina , Focalización Isoeléctrica , Vacunas contra la Malaria/química , Proteínas de la Membrana/química , Ratones , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
9.
Sci Rep ; 11(1): 17928, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504134

RESUMEN

Malaria is a highly prevalent parasitic disease in regions with tropical and subtropical climates worldwide. Among the species of Plasmodium causing human malaria, P. vivax is the second most prevalent and the most geographically widespread species. A major target of a pre-erythrocytic vaccine is the P. vivax circumsporozoite protein (PvCSP). In previous studies, we fused two recombinant proteins representing three allelic variants of PvCSP (VK210, VK247 and P. vivax-like) to the mumps virus nucleocapsid protein to enhance immune responses against PvCSP. The objective of the present study was to evaluate the protective efficacy of these recombinants in mice challenged with transgenic P. berghei parasites expressing PvCSP allelic variants. Formulations containing Poly (I:C) or Montanide ISA720 as adjuvants elicited high and long-lasting IgG antibody titers specific to each PvCSP allelic variant. Immunized mice were challenged with two existing chimeric P. berghei parasite lines expressing PvCSP-VK210 and PvCSP-VK247. We also developed a novel chimeric line expressing the third allelic variant, PvCSP-P. vivax-like, as a new murine immunization-challenge model. Our formulations conferred partial protection (significant delay in the time to reach 1% parasitemia) against challenge with the three chimeric parasites. Our results provide insights into the development of a vaccine targeting multiple strains of P. vivax.


Asunto(s)
Alelos , Inmunidad Humoral , Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunación/métodos , Adyuvantes Inmunológicos , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Femenino , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacunas contra la Malaria/química , Malaria Vivax/parasitología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Organismos Modificados Genéticamente , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/inmunología
10.
Nature ; 595(7866): 289-294, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194041

RESUMEN

The global decline in malaria has stalled1, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 104 to 2 × 105 PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of P. falciparum, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African P. falciparum strains.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Hígado/inmunología , Hígado/parasitología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/inmunología , Vacunas Atenuadas/inmunología , Adulto , Animales , Formación de Anticuerpos/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Estadios del Ciclo de Vida/inmunología , Malaria/sangre , Malaria/inmunología , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/química , Masculino , Persona de Mediana Edad , Plasmodium falciparum/crecimiento & desarrollo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Tiempo , Vacunación/efectos adversos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/química
11.
Comput Biol Chem ; 92: 107493, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33962170

RESUMEN

Vaccine based strategies offer a promising future in malaria control by generating protective immunity against natural infection. However, vaccine development is hindered by the Plasmodium sp. genetic diversity. Previously, we have shown P41 protein from 6-Cysteine shared by Plasmodium sp. and could be used for cross-species anti-malaria vaccines. Two different approaches, ancestral, and consensus sequence, could produce a single target for all human-infecting Plasmodium. In this study, we investigated the efficacy of ancestral and consensus of P41 protein. Phylogenetic and time tree reconstruction was conducted by RAXML and BEAST2 package to determine the relationship of known P41 sequences. Ancestral and consensus sequences were reconstructed by the GRASP server and Unipro Ugene software, respectively. The structural prediction was made using the Psipred and Rosetta program. The protein characteristic was analyzed by assessing hydrophobicity and Post-Translational Modification sites. Meanwhile, the immunogenicity score for B-cell, T-cell, and MHC was determined using an immunoinformatic approach. The result suggests that ancestral and consensus have a distinct protein characteristic with high immunogenicity scores for all immune cells. We found one shared conserved epitope with phosphorylation modification from the ancestral sequence to target the cross-species vaccine. Thus, this study provides detailed insight into P41 efficacy for the cross-species anti-malaria blood-stage vaccine.


Asunto(s)
Antígenos de Protozoos/inmunología , Antígeno CD48/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Plasmodium/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígeno CD48/química , Antígeno CD48/genética , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética
12.
Comput Biol Chem ; 92: 107495, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33940529

RESUMEN

The development of the anti-malaria vaccine holds a promising future in malaria control. One of the anti-malaria vaccine strategies known as the transmission-blocking vaccine (TBV) is to inhibit the parasite transmission between humans and mosquitoes by targeting the parasite gametocyte. Previously, we found that P48/45 included in the 6-Cysteine protein family shared by Plasmodium sp. We also detected vaccine properties possessed by all human-infecting Plasmodium and could be used as a cross-species anti-malaria vaccine. In this study, we investigated the efficacy of P48/45 through the ancestral and consensus reconstruction approach. P48/45 phylogenetic and time tree analysis was done by RAXML and BEAST2. GRASP server and Ugene software were used to reconstruct ancestral and consensus sequences, respectively. The protein structural prediction was made by using a psipred and Rosetta program. Each protein characteristic of P48/45 was analyzed by assessing hydrophobicity and Post-Translational Modification sites. Meanwhile, the Epitope sequence for B-cell, T-cell, and HLA was determined using an immunoinformatics approach. Lastly, molecular docking simulation was done to determine native binding interactions of P48/45-P230. The result showed a distinct protein characteristic of ancestral and consensus sequences. The immunogenicity analysis revealed the number of epitopes in the ancestral sequence is greater than the consensus sequence. The study also found a conserved epitope located in the binding site and consists of specific Post-Translational Modification sites. Hence, our research provides detailed insight into ancestral and consensus P48/45 efficacy for the cross-species anti-malaria vaccine.


Asunto(s)
Antimaláricos/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Antimaláricos/química , Antimaláricos/farmacología , Secuencia de Consenso , Humanos , Vacunas contra la Malaria/química , Vacunas contra la Malaria/farmacología , Filogenia , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/efectos de los fármacos , Proteínas Protozoarias/genética , Programas Informáticos
13.
Infect Genet Evol ; 92: 104875, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33905890

RESUMEN

Plasmodium falciparum (P. falciparum) is a leading causative agent of malaria, an infectious disease that can be fatal. Unfortunately, control measures are becoming less effective over time. A vaccine is needed to effectively control malaria and lead towards the total elimination of the disease. There have been multiple attempts to develop a vaccine, but to date, none have been certified as appropriate for wide-scale use. In this study, an immunoinformatics method is presented to design a multi-epitope vaccine construct predicted to be effective against P. falciparum malaria. This was done through the prediction of 12 CD4+ T-cell, 10 CD8+ T-cell epitopes and, 1 B-cell epitope which were assessed for predicted high antigenicity, immunogenicity, and non-allergenicity through in silico methods. The Human Leukocyte Antigen (HLA) population coverage showed that the alleles associated with the epitopes accounted for 78.48% of the global population. The CD4+ and CD8+ T-cell epitopes were docked to HLA-DRB1*07:01 and HLA-A*32:01 successfully. Therefore, the epitopes were deemed to be suitable as components of a multi-epitope vaccine construct. Adjuvant RS09 was added to the construct to generate a stronger immune response, as confirmed by an immune system simulation. Finally, the structural stability of the predicted multi-epitope vaccine was assessed using molecular dynamics simulations. The results show a promising vaccine design that should be further synthesised and assessed for its efficacy in an experimental laboratory setting.


Asunto(s)
Biología Computacional , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Vacunas contra la Malaria/química , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Humanos
14.
Malar J ; 20(1): 37, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430886

RESUMEN

BACKGROUND: Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. MATERIAL AND METHODS: Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1-3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. RESULTS: The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. CONCLUSION: We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Inmunidad Humoral , Proteínas de la Membrana/genética , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Anticuerpos Monoclonales/inmunología , Antígenos de Protozoos/metabolismo , Humanos , Vacunas contra la Malaria/química , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo
15.
Malar J ; 19(1): 421, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228666

RESUMEN

To maintain momentum towards improved malaria control and elimination, a vaccine would be a key addition to the intervention toolkit. Two approaches are recommended: (1) promote the development and short to medium term deployment of first generation vaccine candidates and (2) support innovation and discovery to identify and develop highly effective, long-lasting and affordable next generation malaria vaccines.


Asunto(s)
Investigación Biomédica , Descubrimiento de Drogas/estadística & datos numéricos , Vacunas contra la Malaria , Vacunas contra la Malaria/análisis , Vacunas contra la Malaria/química , Vacunas contra la Malaria/aislamiento & purificación , Vacunas contra la Malaria/farmacología
16.
Malar J ; 19(1): 202, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513160

RESUMEN

BACKGROUND: Developing thermostable vaccines is a challenge for pharmaceutical companies due to the inherent instability of biological molecules in aqueous solution. The problem is even more stringent in regions subjected to high temperatures in which protective cold chain is difficult to maintain due to a lack of infrastructure. Here, a simple, cost-effective solution to increase the thermostability of the malaria candidate vaccine RTS,S/AS01 is described. This vaccine currently needs to be stored between 2 and 8  °C due to the sensitivity of liquid AS01 to higher temperatures. The strategy was to increase thermostability by co-lyophilizing the RTS,S antigen and AS01. METHODS: Co-lyophilization was achieved in a solution containing 5% sucrose, 10 mM potassium phosphate and 0.0312% polysorbate 80 at pH 6.1. The physicho-chemical characteristics and immunogenic properties of the resulting solid product, called CL-vac, fresh or stored at high temperature, were compared to those of the candidate RTS,S/AS01. RESULTS: CL-vac proved to be acceptable in terms of visual appearance and physico-chemical characteristics. The structural integrity of both RTS,S and AS01 within CL-vac and its equivalence to the RTS,S/AS01 candidate vaccine were shown. Further, the stability of CL-vac was demonstrated for storage periods including 1 year at 4  °C, 1 year at 30  °C, and up to 6 months at 37  °C. In addition, CL-vac could withstand a heat excursion consisting of 1 month at 45  °C after storage for 1 year at 30  °C. Equivalence and stability were demonstrated by the various analytical tools and the immunogenicity of the samples after storage was also demonstrated in mice. CONCLUSIONS: In conclusion, the co-lyophilization process appeared as a promising approach to increase RTS/AS01 vaccine thermostability.


Asunto(s)
Liofilización , Vacunas contra la Malaria/química , Vacunación/métodos , Vacunas Sintéticas/química
17.
Int J Biol Macromol ; 158: 159-179, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32360460

RESUMEN

Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.


Asunto(s)
Epítopos/química , Vacunas contra la Malaria/química , Simulación del Acoplamiento Molecular , Plasmodium falciparum/inmunología , Administración Oral , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos , Epítopos/inmunología , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
18.
Biochem Biophys Res Commun ; 527(4): 1021-1026, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32439169

RESUMEN

Malaria remains a large-scale public health problem, killing more than 400,000 people and infecting up to 230 million worldwide, every year. Unfortunately, despite numerous efforts and research concerning vaccine development, results to date have been low and/or strain-specific. This work describes a strategy involving Plasmodium falciparum Duffy binding-like (DBL) and reticulocyte-binding protein homologue (RH) family-derived minimum functional peptides, netMHCIIpan3.2 parental and modified peptides' in silico binding prediction and modeling some Aotus major histocompatibility class II (MHCII) molecules based on known human molecules' structure to understand their differences. These are used to explain peptides' immunological behaviour when used as vaccine components in the Aotus model. Despite the great similarity between human and Aotus immune system molecules, around 50% of Aotus allele molecules lack a counterpart in the human immune system which could lead to an Aotus-specific vaccine. It was also confirmed that functional Plasmodium falciparum' conserved proteins are immunologically silent (in both the animal model and in-silico prediction); they must therefore be modified to elicit an appropriate immune response. Some peptides studied here had the desired behaviour and can thus be considered components of a fully-protective antimalarial vaccine.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Vacunas de Subunidad/inmunología , Secuencia de Aminoácidos , Animales , Aotidae , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/inmunología , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Vacunas contra la Malaria/química , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Modelos Moleculares , Plasmodium falciparum/química , Proteínas Protozoarias/química , Proteínas Protozoarias/uso terapéutico , Vacunas de Subunidad/química , Vacunas de Subunidad/uso terapéutico
19.
Proc Natl Acad Sci U S A ; 117(6): 3114-3122, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988134

RESUMEN

Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria , Malaria Falciparum/inmunología , Plasmodium falciparum , Proteínas Protozoarias , Virus del Mosaico del Tabaco/genética , Animales , Células HEK293 , Humanos , Inmunogenicidad Vacunal , Macaca mulatta , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Ingeniería de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología
20.
Front Immunol ; 11: 606266, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505395

RESUMEN

The cysteine-rich Pfs48/45 protein, a Plasmodium falciparum sexual stage surface protein, has been advancing as a candidate antigen for a transmission-blocking vaccine (TBV) for malaria. However, Pfs48/45 contains multiple disulfide bonds, that are critical for proper folding and induction of transmission-blocking (TB) antibodies. We have previously shown that R0.6C, a fusion of the 6C domain of Pfs48/45 and a fragment of PfGLURP (R0), expressed in Lactococcus lactis, was properly folded and induced transmission-blocking antibodies. Here we describe the process development and technology transfer of a scalable and reproducible process suitable for R0.6C manufacturing under current Good Manufacturing Practices (cGMP). This process resulted in a final purified yield of 25 mg/L, sufficient for clinical evaluation. A panel of analytical assays for release and stability assessment of R0.6C were developed including HPLC, SDS-PAGE, and immunoblotting with the conformation-dependent TB mAb45.1. Intact mass analysis of R0.6C confirmed the identity of the product including the three disulfide bonds and the absence of post-translational modifications. Multi-Angle Light Scattering (MALS) coupled to size exclusion chromatography (SEC-MALS), further confirmed that R0.6C was monomeric (~70 kDa) in solution. Lastly, preclinical studies demonstrated that the R0.6C Drug Product (adsorbed to Alhydrogel®) elicited functional antibodies in small rodents and that adding Matrix-M™ adjuvant further increased the functional response. Here, building upon our past work, we filled the gap between laboratory and manufacturing to ready R0.6C for production under cGMP and eventual clinical evaluation as a malaria TB vaccine.


Asunto(s)
Biotecnología , Microbiología Industrial , Lactobacillus/metabolismo , Vacunas contra la Malaria/biosíntesis , Malaria Falciparum/prevención & control , Glicoproteínas de Membrana/biosíntesis , Proteínas Protozoarias/biosíntesis , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antiprotozoarios/inmunología , Composición de Medicamentos , Inmunización , Inmunogenicidad Vacunal , Lactobacillus/genética , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/farmacología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/farmacología , Ratones , Nanopartículas , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/farmacología , Saponinas/farmacología , Relación Estructura-Actividad , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA