Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Anat Rec (Hoboken) ; 305(8): 1871-1891, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34545690

RESUMEN

Our knowledge of nasal cavity anatomy has grown considerably with the advent of micro-computed tomography (CT). More recently, a technique called diffusible iodine-based contrast-enhanced CT (diceCT) has rendered it possible to study nasal soft tissues. Using diceCT and histology, we aim to (a) explore the utility of these techniques for inferring the presence of venous sinuses that typify respiratory mucosa and (b) inquire whether distribution of vascular mucosa may relate to specialization for derived functions of the nasal cavity (i.e., nasal-emission of echolocation sounds) in bats. Matching histology and diceCT data indicate that diceCT can detect venous sinuses as either darkened, "empty" spaces, or radio-opaque islands when blood cells are present. Thus, we show that diceCT provides reliable information on vascular distribution in the mucosa of the nasal airways. Among the bats studied, a nonecholocating pteropodid (Cynopterus sphinx) and an oral-emitter of echolocation sounds (Eptesicus fuscus) possess venous sinus networks that drain into the sphenopalatine vein rostral to the nasopharynx. In contrast, nasopharyngeal passageways of nasal-emitting hipposiderids are notably packed with venous sinuses. The mucosae of the nasopharyngeal passageways are far less vascular in nasal-emitting phyllostomids, in which vascular mucosae are more widely distributed in the nasal cavity, and in some nectar-feeding species, a particularly large venous sinus is adjacent to the vomeronasal organ. Therefore, we do not find a common pattern of venous sinus distribution associated with nasal emission of sounds in phyllostomids and hipposiderids. Instead, vascular mucosa is more likely critical for air-conditioning and sometimes vomeronasal function in all bats.


Asunto(s)
Quirópteros , Cavidad Nasal , Mucosa Nasal , Venas , Microtomografía por Rayos X , Animales , Quirópteros/anatomía & histología , Quirópteros/fisiología , Ecolocación/fisiología , Cavidad Nasal/anatomía & histología , Cavidad Nasal/irrigación sanguínea , Cavidad Nasal/citología , Cavidad Nasal/diagnóstico por imagen , Mucosa Nasal/anatomía & histología , Mucosa Nasal/irrigación sanguínea , Mucosa Nasal/citología , Mucosa Nasal/diagnóstico por imagen , Venas/anatomía & histología , Venas/citología , Venas/diagnóstico por imagen
2.
Cell Rep ; 35(11): 109255, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133928

RESUMEN

The formation of new vessels requires a tight synchronization between proliferation, differentiation, and sprouting. However, how these processes are differentially activated, often by neighboring endothelial cells (ECs), remains unclear. Here, we identify cell cycle progression as a regulator of EC sprouting and differentiation. Using transgenic zebrafish illuminating cell cycle stages, we show that venous and lymphatic precursors sprout from the cardinal vein exclusively in G1 and reveal that cell-cycle arrest is induced in these ECs by overexpression of p53 and the cyclin-dependent kinase (CDK) inhibitors p27 and p21. We further demonstrate that, in vivo, forcing G1 cell-cycle arrest results in enhanced vascular sprouting. Mechanistically, we identify the mitogenic VEGFC/VEGFR3/ERK axis as a direct inducer of cell-cycle arrest in ECs and characterize the cascade of events that render "sprouting-competent" ECs. Overall, our results uncover a mechanism whereby mitogen-controlled cell-cycle arrest boosts sprouting, raising important questions about the use of cell cycle inhibitors in pathological angiogenesis and lymphangiogenesis.


Asunto(s)
Puntos de Control del Ciclo Celular , Células Endoteliales , Vasos Linfáticos , Neovascularización Fisiológica , Factor C de Crecimiento Endotelial Vascular , Venas , Proteínas de Pez Cebra , Animales , Animales Modificados Genéticamente , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fase G1 , Vasos Linfáticos/citología , Sistema de Señalización de MAP Quinasas , Neovascularización Fisiológica/efectos de los fármacos , Roscovitina/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/citología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
3.
Nature ; 589(7842): 437-441, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299176

RESUMEN

The formation of arteries is thought to occur by the induction of a highly conserved arterial genetic programme in a subset of vessels that will later experience an increase in oxygenated blood flow1,2. The initial steps of arterial specification require both the VEGF and Notch signalling pathways3-5. Here, we combine inducible genetic mosaics and transcriptomics to modulate and define the function of these signalling pathways in cell proliferation, arteriovenous differentiation and mobilization. We show that endothelial cells with high levels of VEGF or Notch signalling are intrinsically biased to mobilize and form arteries; however, they are not genetically pre-determined, and can also form veins. Mechanistically, we found that increased levels of VEGF and Notch signalling in pre-arterial capillaries suppresses MYC-dependent metabolic and cell-cycle activities, and promotes the incorporation of endothelial cells into arteries. Mosaic lineage-tracing studies showed that endothelial cells that lack the Notch-RBPJ transcriptional activator complex rarely form arteries; however, these cells regained the ability to form arteries when the function of MYC was suppressed. Thus, the development of arteries does not require the direct induction of a Notch-dependent arterial differentiation programme, but instead depends on the timely suppression of endothelial cell-cycle progression and metabolism, a process that precedes arterial mobilization and complete differentiation.


Asunto(s)
Arterias/citología , Arterias/crecimiento & desarrollo , Proliferación Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Masculino , Ratones , Mosaicismo , Mutación , Fenotipo , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Notch/deficiencia , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/citología
4.
Nat Commun ; 11(1): 6314, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298956

RESUMEN

Blood and lymphatic vessels structurally bear a strong resemblance but never share a lumen, thus maintaining their distinct functions. Although lymphatic vessels initially arise from embryonic veins, the molecular mechanism that maintains separation of these two systems has not been elucidated. Here, we show that genetic deficiency of Folliculin, a tumor suppressor, leads to misconnection of blood and lymphatic vessels in mice and humans. Absence of Folliculin results in the appearance of lymphatic-biased venous endothelial cells caused by ectopic expression of Prox1, a master transcription factor for lymphatic specification. Mechanistically, this phenotype is ascribed to nuclear translocation of the basic helix-loop-helix transcription factor Transcription Factor E3 (TFE3), binding to a regulatory element of Prox1, thereby enhancing its venous expression. Overall, these data demonstrate that Folliculin acts as a gatekeeper that maintains separation of blood and lymphatic vessels by limiting the plasticity of committed endothelial cells.


Asunto(s)
Plasticidad de la Célula , Vasos Linfáticos/embriología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Supresoras de Tumor/deficiencia , Venas/embriología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Embrión de Mamíferos , Células Endoteliales/metabolismo , Endotelio Linfático/citología , Endotelio Linfático/embriología , Endotelio Vascular/citología , Endotelio Vascular/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Vasos Linfáticos/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Venas/citología
5.
Circ Res ; 126(7): 875-888, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32065070

RESUMEN

RATIONALE: Significant progress has revealed transcriptional inputs that underlie regulation of artery and vein endothelial cell fates. However, little is known concerning genome-wide regulation of this process. Therefore, such studies are warranted to address this gap. OBJECTIVE: To identify and characterize artery- and vein-specific endothelial enhancers in the human genome, thereby gaining insights into mechanisms by which blood vessel identity is regulated. METHODS AND RESULTS: Using chromatin immunoprecipitation and deep sequencing for markers of active chromatin in human arterial and venous endothelial cells, we identified several thousand artery- and vein-specific regulatory elements. Computational analysis revealed that NR2F2 (nuclear receptor subfamily 2, group F, member 2) sites were overrepresented in vein-specific enhancers, suggesting a direct role in promoting vein identity. Subsequent integration of chromatin immunoprecipitation and deep sequencing data sets with RNA sequencing revealed that NR2F2 regulated 3 distinct aspects related to arteriovenous identity. First, consistent with previous genetic observations, NR2F2 directly activated enhancer elements flanking cell cycle genes to drive their expression. Second, NR2F2 was essential to directly activate vein-specific enhancers and their associated genes. Our genomic approach further revealed that NR2F2 acts with ERG (ETS-related gene) at many of these sites to drive vein-specific gene expression. Finally, NR2F2 directly repressed only a small number of artery enhancers in venous cells to prevent their activation, including a distal element upstream of the artery-specific transcription factor, HEY2 (hes related family bHLH transcription factor with YRPW motif 2). In arterial endothelial cells, this enhancer was normally bound by ERG, which was also required for arterial HEY2 expression. By contrast, in venous endothelial cells, NR2F2 was bound to this site, together with ERG, and prevented its activation. CONCLUSIONS: By leveraging a genome-wide approach, we revealed mechanistic insights into how NR2F2 functions in multiple roles to maintain venous identity. Importantly, characterization of its role at a crucial artery enhancer upstream of HEY2 established a novel mechanism by which artery-specific expression can be achieved.


Asunto(s)
Arterias/metabolismo , Factor de Transcripción COUP II/genética , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Venas/metabolismo , Arterias/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor de Transcripción COUP II/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Regulación de la Expresión Génica , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Venas/citología
6.
Biomed Microdevices ; 22(1): 9, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863202

RESUMEN

In this report, we describe a microfluidic vascular-bed (micro-VB) device providing a platform for 3D tissue engineering with vascular network formation. The micro-VB device allows functional connections between endothelial capillaries of heterogeneous sections (5-100 µm in diameter) and artificial plastic tubes or reservoirs (1-10 mm in diameter). Moreover, the micro-VB device can be installed in a standard 100 mm-diameter Petri dish. Endothelial networks in 3D engineered tissues were obtained by cellular self-assembly on the device, after co-culturing of human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts (NHDFs) in fibrin gel. Endothelial capillary connection between vascularized tissues and microfluidic channels, mimicking arteries and veins, was confirmed by perfusion of fluorescent microspheres. The micro-VB devices were compatible with the use of commercially available culture dishes and did not require the involvement of additional equipment. Thus, these micro-VB devices are expected to substantially improve the routine application of 3D tissue engineering to regenerative medicine.


Asunto(s)
Arterias/citología , Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos/instrumentación , Venas/citología , Diseño de Equipo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos
7.
IET Nanobiotechnol ; 13(8): 857-859, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31625527

RESUMEN

The transparent wing of the dragonfly Aeshna cyanea has been investigated using scanning electron microscopy (SEM), optical microscopy (OPM), energy-dispersive X-ray spectroscopy (EDS) and reflectance spectroscopy. Four cells (D1-D4) were studied and classified according to their general morphology. The OPM depicted the vein-joint characterised by the distribution of resilin. EDS technique showed common elements such as carbon, oxygen, and chlorine. SEM analysis revealed thin membranes reinforced with a network of hallow veins. Spikes and round shape of microstructures were identified. The roughness of the pruinosity was estimated, which indicates the shape and curvature of the microstructures that essentially play a significant role in the optical response observed. The study can be essential to design and improve micro-air vehicles.


Asunto(s)
Odonata/anatomía & histología , Odonata/citología , Animales , Forma de la Célula , Tamaño de la Célula , Proteínas de Insectos/metabolismo , Microscopía/veterinaria , Microscopía Electrónica de Rastreo/veterinaria , Odonata/ultraestructura , Venas/anatomía & histología , Venas/citología , Venas/ultraestructura , Alas de Animales/anatomía & histología , Alas de Animales/irrigación sanguínea , Alas de Animales/citología , Alas de Animales/metabolismo
8.
Dev Cell ; 49(2): 279-292.e5, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-31014480

RESUMEN

The correct assignment of cell fate within fields of multipotent progenitors is essential for accurate tissue diversification. The first lymphatic vessels arise from pre-existing veins after venous endothelial cells become specified as lymphatic progenitors. Prox1 specifies lymphatic fate and labels these progenitors; however, the mechanisms restricting Prox1 expression and limiting the progenitor pool remain unknown. We identified a zebrafish mutant that displayed premature, expanded, and prolonged lymphatic specification. The gene responsible encodes the regulator of alternative splicing, Nova2. In zebrafish and human endothelial cells, Nova2 selectively regulates pre-mRNA splicing for components of signaling pathways and phosphoproteins. Nova2-deficient endothelial cells display increased Mapk/Erk signaling, and Prox1 expression is dynamically controlled by Erk signaling. We identify a mechanism whereby Nova2-regulated splicing constrains Erk signaling, thus limiting lymphatic progenitor cell specification. This identifies the capacity of a factor that tunes mRNA splicing to control assignment of cell fate during vascular differentiation.


Asunto(s)
Vasos Linfáticos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Animales , Diferenciación Celular , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Linfangiogénesis , Vasos Linfáticos/citología , Masculino , Antígeno Ventral Neuro-Oncológico , Proteínas Supresoras de Tumor/metabolismo , Venas/citología , Venas/metabolismo , Pez Cebra
9.
Sci Rep ; 9(1): 3826, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846769

RESUMEN

The current work reports the functional characterization of human induced pluripotent stem cells (iPSCs)- arterial and venous-like endothelial cells (ECs), derived in chemically defined conditions, either in monoculture or seeded in a scaffold with mechanical properties similar to blood vessels. iPSC-derived arterial- and venous-like endothelial cells were obtained in two steps: differentiation of iPSCs into endothelial precursor cells (CD31pos/KDRpos/VE-Cadmed/EphB2neg/COUP-TFneg) followed by their differentiation into arterial and venous-like ECs using a high and low vascular endothelial growth factor (VEGF) concentration. Cells were characterized at gene, protein and functional levels. Functionally, both arterial and venous-like iPSC-derived ECs responded to vasoactive agonists such as thrombin and prostaglandin E2 (PGE2), similar to somatic ECs; however, arterial-like iPSC-derived ECs produced higher nitric oxide (NO) and elongation to shear stress than venous-like iPSC-derived ECs. Both cells adhered, proliferated and prevented platelet activation when seeded in poly(caprolactone) scaffolds. Interestingly, both iPSC-derived ECs cultured in monoculture or in a scaffold showed a different inflammatory profile than somatic ECs. Although both somatic and iPSC-derived ECs responded to tumor necrosis factor-α (TNF-α) by an increase in the expression of intercellular adhesion molecule 1 (ICAM-1), only somatic ECs showed an upregulation in the expression of E-selectin or vascular cell adhesion molecule 1 (VCAM-1).


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/citología , Arterias/citología , Arterias/efectos de los fármacos , Arterias/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Venas/citología , Venas/efectos de los fármacos , Venas/metabolismo
10.
Blood Purif ; 47(4): 346-350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30544109

RESUMEN

BACKGROUND/AIMS: Hemodialysis causes the systemic inflammatory response, which may affect the function of endothelial cells. METHODS: We studied the effect of the serum obtained after a hemodialysis session, compared to serum collected before the start of the treatment, on the gene expression and secretory activity of arterial endothelial cells (AECs) and venous endothelial cells (VECs) in in vitro culture. RESULTS: Serum collected at the end of the hemodialysis session increased expression of the studied genes in VECs, and at the same time decreased their expression in AECs. Secretory activity was increased in VEC: (interleukin-6 [IL-6] +29%, p < 0.05, von Willebrand factor +23%, p < 0.02; tissue plasminogen activator [t-PA] +35%, p < 0.002, t-PA/plasminogen activator inhibitor-1 [PAI-1] ratio + 57%, p < 0.005). In AEC, synthesis of IL-6 and vascular endothelial growth factor were reduced (-36%, p < 0.02, -34%, p < 0.05, respectively) and the tPA/PAI-1 ratio was increased (+22%, p < 0.01). CONCLUSIONS: Hemodialysis induces the inflammatory, procoagulant, and profibrinolytic activity of VEC, whereas suppression of AEC is observed at the same time. Video Journal Club 'Cappuccino with Claudio Ronco' at https://www.karger.com/Journal/ArticleNews/223997?sponsor=52.


Asunto(s)
Arterias/citología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Diálisis Renal/efectos adversos , Venas/citología , Anciano , Biomarcadores , Células Cultivadas , Endotelio Vascular/citología , Perfilación de la Expresión Génica , Humanos , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/terapia , Persona de Mediana Edad , Transcriptoma
11.
Nat Commun ; 9(1): 5314, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30552331

RESUMEN

Arteries and veins are formed independently by different types of endothelial cells (ECs). In vascular remodeling, arteries and veins become connected and some arteries become veins. It is unclear how ECs in transforming vessels change their type and how fates of individual vessels are determined. In embryonic zebrafish trunk, vascular remodeling transforms arterial intersegmental vessels (ISVs) into a functional network of arteries and veins. Here we find that, once an ISV is connected to venous circulation, venous blood flow promotes upstream migration of ECs that results in displacement of arterial ECs by venous ECs, completing the transformation of this ISV into a vein without trans-differentiation of ECs. Arterial blood flow initiated in two neighboring ISVs prevents their transformation into veins by activating Notch signaling in ECs. Together, different responses of ECs to arterial and venous blood flow lead to formation of a balanced network with equal numbers of arteries and veins.


Asunto(s)
Arterias/citología , Arterias/embriología , Células Endoteliales/citología , Células Endoteliales/fisiología , Remodelación Vascular/fisiología , Venas/citología , Venas/embriología , Pez Cebra/embriología , Animales , Diferenciación Celular/fisiología , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Morfolinos , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
PLoS One ; 13(9): e0204045, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30265729

RESUMEN

Changes in extracellular matrix proteins may contribute significantly to the adaptation of vein grafts to the arterial circulation. We examined the production and distribution of versican and hyaluronan in intact human vein rings cultured ex vivo, veins perfused ex vivo, and cultured venous adventitial and smooth muscle cells. Immunohistochemistry revealed higher levels of versican in the intima/media compared to the adventitia, and no differences in hyaluronan. In the vasa vasorum, versican and hyaluronan associated with CD34+ progenitor cells. Culturing the vein rings for 14 days revealed increased versican immunostaining of 30-40% in all layers, with no changes in hyaluronan. Changes in versican accumulation appear to result from increased synthesis in the intima/media and decreased degradation in the adventitia as versican transcripts were increased in the intima/media, but unchanged in the adventitia, and versikine (the ADAMTS-mediated cleavage product of versican) was increased in the intima/media, but decreased in the adventitia. In perfused human veins, versican was specifically increased in the intima/media in the presence of venous pressure, but not with arterial pressure. Unexpectedly, cultured adventitial cells express and accumulate more versican and hyaluronan than smooth muscle cells. These data demonstrate a differential regulation of versican and hyaluronan in human venous adventitia vs. intima/media and suggest distinct functions for these extracellular matrix macromolecules in these venous wall compartments during the adaptive response of vein grafts to the arterial circulation.


Asunto(s)
Venas/metabolismo , Venas/trasplante , Versicanos/metabolismo , Adventicia/metabolismo , Antígenos CD34/metabolismo , Presión Arterial/fisiología , Células Cultivadas , Humanos , Ácido Hialurónico/metabolismo , Inmunohistoquímica , Miocitos del Músculo Liso/metabolismo , Vena Safena/citología , Vena Safena/metabolismo , Células Madre/metabolismo , Técnicas de Cultivo de Tejidos , Túnica Íntima/citología , Túnica Íntima/metabolismo , Túnica Media/citología , Túnica Media/metabolismo , Vasa Vasorum/citología , Vasa Vasorum/metabolismo , Venas/citología , Versicanos/genética
13.
Biochem Pharmacol ; 156: 204-214, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144404

RESUMEN

Glutaminase-1 (GLS1) is a mitochondrial enzyme found in endothelial cells (ECs) that metabolizes glutamine to glutamate and ammonia. Although glutaminolysis modulates the function of human umbilical vein ECs, it is not known whether these findings extend to human ECs beyond the fetal circulation. Furthermore, the molecular mechanism by which GLS1 regulates EC function is not defined. In this study, we show that the absence of glutamine in the culture media or the inhibition of GLS1 activity or expression blocked the proliferation and migration of ECs derived from the human umbilical vein, the human aorta, and the human microvasculature. GLS1 inhibition arrested ECs in the G0/G1 phase of the cell cycle and this was associated with a significant decline in cyclin A expression. Restoration of cyclin A expression via adenoviral-mediated gene transfer improved the proliferative, but not the migratory, response of GLS1-inhibited ECs. Glutamine deprivation or GLS1 inhibition also stimulated the production of reactive oxygen species and this was associated with a marked decline in heme oxygenase-1 (HO-1) expression. GLS1 inhibition also sensitized ECs to the cytotoxic effect of hydrogen peroxide and this was prevented by the overexpression of HO-1. In conclusion, the metabolism of glutamine by GLS1 promotes human EC proliferation, migration, and survival irrespective of the vascular source. While cyclin A contributes to the proliferative action of GLS1, HO-1 mediates its pro-survival effect. These results identify GLS1 as a promising therapeutic target in treating diseases associated with aberrant EC proliferation, migration, and viability.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Endoteliales/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutaminasa/metabolismo , Glutamina/farmacología , Aorta/citología , Bencenoacetamidas/farmacología , Supervivencia Celular/efectos de los fármacos , Ciclina A/genética , Ciclina A/metabolismo , Diazooxonorleucina/farmacología , Células Endoteliales/efectos de los fármacos , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Interferencia de ARN , Tiadiazoles/farmacología , Venas/citología
14.
Sci Rep ; 8(1): 10189, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976931

RESUMEN

As effectors of the Hippo signaling cascade, YAP1 and TAZ are transcriptional regulators playing important roles in development, tissue homeostasis and cancer. A number of different cues, including mechanotransduction of extracellular stimuli, adhesion molecules, oncogenic signaling and metabolism modulate YAP1/TAZ nucleo-cytoplasmic shuttling. In the nucleus, YAP1/TAZ tether with the DNA binding proteins TEADs, to activate the expression of target genes that regulate proliferation, migration, cell plasticity, and cell fate. Based on responsive elements present in the human and zebrafish promoters of the YAP1/TAZ target gene CTGF, we established zebrafish fluorescent transgenic reporter lines of Yap1/Taz activity. These reporter lines provide an in vivo view of Yap1/Taz activity during development and adulthood at the whole organism level. Transgene expression was detected in many larval tissues including the otic vesicles, heart, pharyngeal arches, muscles and brain and is prominent in endothelial cells. Analysis of vascular development in yap1/taz zebrafish mutants revealed specific defects in posterior cardinal vein (PCV) formation, with altered expression of arterial/venous markers. The overactivation of Yap1/Taz in endothelial cells was sufficient to promote an aberrant vessel sprouting phenotype. Our findings confirm and extend the emerging role of Yap1/Taz in vascular development including angiogenesis.


Asunto(s)
Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Fisiológica/genética , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Factor de Crecimiento del Tejido Conjuntivo/genética , Embrión no Mamífero , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Genes Reporteros/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Luciferasas/química , Luciferasas/genética , Microscopía Confocal , Microscopía Fluorescente , Mutación , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Transgenes/genética , Venas/citología , Venas/crecimiento & desarrollo , Proteínas Señalizadoras YAP , Pez Cebra , Proteínas de Pez Cebra/genética
15.
Nature ; 559(7714): 356-362, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973725

RESUMEN

Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries. Vein cells underwent a gradual and simultaneous switch from venous to arterial fate before a subset of cells crossed a transcriptional threshold into the pre-artery state. Before the onset of coronary blood flow, pre-artery cells appeared in the immature vessel plexus, expressed mature artery markers, and decreased cell cycling. The vein-specifying transcription factor COUP-TF2 (also known as NR2F2) prevented plexus cells from overcoming the pre-artery threshold by inducing cell cycle genes. Thus, vein-derived coronary arteries are built by pre-artery cells that can differentiate independently of blood flow upon the release of inhibition mediated by COUP-TF2 and cell cycle factors.


Asunto(s)
Arterias/citología , Vasos Coronarios/citología , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Venas/citología , Animales , Arterias/metabolismo , Factor de Transcripción COUP II/metabolismo , Ciclo Celular/genética , Diferenciación Celular , Linaje de la Célula , Vasos Coronarios/metabolismo , Femenino , Masculino , Ratones , Análisis de Secuencia de ARN , Venas/metabolismo
16.
J Cell Physiol ; 233(11): 8802-8814, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29904913

RESUMEN

Vein endothelial cells (VECs) constitute an important barrier for macromolecules and circulating cells from the blood to the tissues, stabilizing the colloid osmotic pressure of the blood, regulating the vascular tone, and rapidly changing the intercellular connection, and maintaining normal physiological function. Tight junction has been discovered as an important structural basis of intercellular connection and may play a key role in intercellular connection injuries or vascular diseases and selenium (Se) deficiency symptoms. Hence, we replicated the Se-deficient broilers model and detected the specific microRNA in response to Se-deficient vein by using quantitative real time-PCR (qRT-PCR) analysis. Also, we selected miR-128-1-5p based on differential expression in vein tissue and confirmed its target gene cell adhesion molecule 1 (CADM1) by the dual luciferase reporter assay and qRT-PCR in VECs. We made the ectopic miR-128-1-5p expression for the purpose of validating its function on tight junction. The result showed that miR-128-1-5p and CADM1 were involved in the ZO-1-mediated tight junction, increased paracellular permeability, and arrested cell cycle. We presumed that miR-128-1-5p and Se deficiency might trigger tight junction. Interestingly, miR-128-1-5p inhibitor and fasudil in part hinder the destruction of the intercellular structure caused by Se deficiency. The miR-128-1-5p/CADM1/tight junction axis provides a new avenue toward understanding the mechanism of Se deficiency, revealing a novel regulation model of tight junction injury in vascular diseases.


Asunto(s)
Molécula 1 de Adhesión Celular/genética , MicroARNs/genética , Selenio/metabolismo , Uniones Estrechas/genética , Animales , Apoptosis/genética , Pollos , Células Endoteliales/metabolismo , Células Endoteliales/patología , MicroARNs/metabolismo , Selenio/deficiencia , Uniones Estrechas/patología , Venas/citología , Venas/metabolismo
17.
Sci Rep ; 8(1): 6342, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679053

RESUMEN

Human extravillous trophoblast (EVT) invasion of the pregnant uterus constitutes a pivotal event for the establishment of the maternal-fetal interface. Compromised EVT function manifesting in inadequate arterial remodeling is associated with the severe pregnancy disorder early-onset preeclampsia (eoPE). Recent studies suggest that EVTs invade the entire uterine vasculature including arteries, veins and lymphatics in the first trimester of pregnancy. We therefore hypothesized that EVT-derived factors accumulate in the circulation of pregnant women early in gestation and may serve to predict eoPE. In contrast to published literature, we demonstrate that placenta-associated diamine oxidase (DAO) is not expressed by maternal decidual cells but solely by EVTs, especially when in close proximity to decidual vessels. Cultures of primary EVTs express and secret large amounts of bioactive DAO. ELISA measurements indicate a pregnancy-specific rise in maternal DAO plasma levels around gestational week (GW) 7 coinciding with vascular invasion of EVTs. Strikingly, DAO levels from eoPE cases were significantly lower (40%) compared to controls in the first trimester of pregnancy but revealed no difference at mid gestation. Furthermore, DAO-containing pregnancy plasma rapidly inactivates pathophysiologically relevant histamine levels. This study represents the first proof of concept suggesting EVT-specific signatures as diagnostic targets for the prediction of eoPE.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Preeclampsia/metabolismo , Trofoblastos/citología , Arterias/citología , Decidua/citología , Femenino , Edad Gestacional , Humanos , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Placenta/citología , Preeclampsia/fisiopatología , Embarazo , Primer Trimestre del Embarazo , Prueba de Estudio Conceptual , Trofoblastos/metabolismo , Trofoblastos/fisiología , Útero/fisiología , Venas/citología
18.
Exp Eye Res ; 172: 36-44, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29608905

RESUMEN

We previously demonstrated endothelial phenotype heterogeneity in the vortex vein system. This study is to further determine whether regional differences are present in the cytoskeleton, junctional proteins and phosphorylated tyrosine labeling within the system. The vortex vein system of twenty porcine eyes was perfused with labels for f-actin, claudin-5, VE-Cadherin, phosphorylated tyrosine and nucleic acid. The endothelial cells of eight different regions (choroidal veins, pre-ampulla, anterior ampulla, mid-ampulla, posterior ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein) were studied using confocal microscopy. There were regional differences in the endothelial cell structures. Cytoskeleton labeling was relatively even in intensity throughout Regions 1 to 6. Overall VE-Cadherin had a non-uniform distribution and thicker width endothelial cell border staining than claudin-5. Progressing downstream there was an increased variation in thickness of VE-cadherin labeling. There was an overlap in phosphorylated tyrosine and VE-Cadherin labeling in the post-ampulla, intra-scleral canal and extra-ocular vortex vein. Intramural cells were observed that were immune-positive for VE-Cadherin and phosphorylated tyrosine. There were significant differences in the number of intramural cells in different regions. Significant regional differences with endothelial cell labeling of cytoskeleton, junction proteins, and phosphorylated tyrosine were found within the vortex vein system. These findings support existing data on endothelial cell phenotype heterogeneity, and may aid in the knowledge of venous pathologies by understanding regions of vulnerability to endothelial damage within the vortex vein system. It could be valuable to further investigate and characterize the VE-cadherin and phosphotyrosine immune-positive intramural cells.


Asunto(s)
Coroides/irrigación sanguínea , Proteínas del Citoesqueleto/metabolismo , Endotelio Vascular/citología , Músculo Liso Vascular/citología , Tirosina/metabolismo , Venas/citología , Actinas/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Claudina-5/metabolismo , Endotelio Vascular/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Confocal , Músculo Liso Vascular/metabolismo , Fosforilación , Porcinos , Venas/metabolismo
19.
Nature ; 554(7693): 475-480, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443965

RESUMEN

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.


Asunto(s)
Vasos Sanguíneos/citología , Encéfalo/irrigación sanguínea , Encéfalo/citología , Células Endoteliales/clasificación , Animales , Arterias/citología , Arteriolas/citología , Capilares/citología , Femenino , Fibroblastos/clasificación , Masculino , Ratones , Miocitos del Músculo Liso/clasificación , Especificidad de Órganos , Pericitos/clasificación , Análisis de la Célula Individual , Transcriptoma , Venas/citología
20.
Thorac Cancer ; 8(6): 606-612, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28857515

RESUMEN

BACKGROUND: Treatments that prevent the motility of breast cancer cells and inhibit formation of new capillary vessels are urgently needed. FSTL1 is a secreted protein that has been implicated in maintaining the normal physiological function of the cardiovascular system, in addition to a variety of other biological functions. We investigated the role of FSTL1 in the proliferation and migration of breast cancer and vascular endothelial cells. METHODS: Human umbilical vein endothelial cells and human breast cancer BT-549 cells were used to test the effects of FSTL1 and the N-terminal domain of FSTL1. Immunofluorescence microscopy and 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide, transwell invasion, and wound healing assays were conducted. RESULTS: Different doses of the N-terminal fragment of FSTL1 (FSTL-N) have variable effects on the migration of these cells. However, FSTL1 does not significantly affect tube formation in vitro from vascular endothelial cells. FSTL1-FL and FSTL1-N have modest effects on the invasion of breast cancer and vascular endothelial cells. Interestingly, FSTL1-FL, but not FSTL-N, modulates vascular endothelial cell polarization. CONCLUSION: FSTL1 modestly affects the proliferation of breast cancer cells and vascular endothelial cells. Our findings improve our understanding of the functions of FSTL1 in breast cancer development and angiogenesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Relacionadas con la Folistatina/química , Proteínas Relacionadas con la Folistatina/metabolismo , Venas/citología , Línea Celular Tumoral , Movimiento Celular , Polaridad Celular , Proliferación Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Venas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA