Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.358
Filtrar
1.
Bull Exp Biol Med ; 177(2): 217-220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39093473

RESUMEN

PT1 peptide isolated from the venom of spider Geolycosa sp. is a modulator of P2X3 receptors that play a role in the development of inflammation and the transmission of pain impulses. The anti-inflammatory and analgesic efficacy of the PT1 peptide was studied in a model of complete Freund's adjuvant-induced paw inflammation in CD-1 mice. The analgesic activity of PT1 peptide was maximum after intramuscular injection at a dose of 0.01 mg/kg, which surpassed the analgesic effect of diclofenac at a dose of 1 mg/kg. The anti-inflammatory activity was maximum after intramuscular injection at a dose of 0.0001 mg/kg; a decrease in paw thickness was observed as soon as 2 h after the administration of the PT1 peptide against the background of inflammation development. All tested doses of PT1 peptide showed high anti-inflammatory activity 4 and 24 h after administration. PT1 peptide at a dose of 0.01 mg/kg when injected intramuscularly simultaneously produced high anti-inflammatory and analgesic effects compared to other doses of the peptide. Increasing the dose of PT1 peptide led to a gradual decrease in its analgesic and anti-inflammatory activity; increasing the dose of intramuscular injection to 0.1 and 1 mg/kg is inappropriate.


Asunto(s)
Analgésicos , Antiinflamatorios , Inflamación , Péptidos , Animales , Ratones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/patología , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Masculino , Péptidos/farmacología , Péptidos/administración & dosificación , Péptidos/uso terapéutico , Inyecciones Intramusculares , Adyuvante de Freund , Venenos de Araña/farmacología , Diclofenaco/farmacología , Diclofenaco/uso terapéutico , Diclofenaco/administración & dosificación , Modelos Animales de Enfermedad , Dolor/tratamiento farmacológico
2.
Biochem Pharmacol ; 227: 116465, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39102991

RESUMEN

In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.


Asunto(s)
Dolor , Venenos de Escorpión , Transducción de Señal , Venenos de Araña , Canales de Sodio Activados por Voltaje , Animales , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Venenos de Escorpión/metabolismo , Venenos de Araña/farmacología , Venenos de Araña/química , Venenos de Araña/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/fisiología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Escorpiones/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Secuencia de Aminoácidos , Arañas/metabolismo
3.
J Gen Physiol ; 156(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042091

RESUMEN

ω-Grammotoxin-SIA (GrTX-SIA) was originally isolated from the venom of the Chilean rose tarantula and demonstrated to function as a gating modifier of voltage-gated Ca2+ (CaV) channels. Later experiments revealed that GrTX-SIA could also inhibit voltage-gated K+ (KV) channel currents via a similar mechanism of action that involved binding to a conserved S3-S4 region in the voltage-sensing domains (VSDs). Since voltage-gated Na+ (NaV) channels contain homologous structural motifs, we hypothesized that GrTX-SIA could inhibit members of this ion channel family as well. Here, we show that GrTX-SIA can indeed impede the gating process of multiple NaV channel subtypes with NaV1.6 being the most susceptible target. Moreover, molecular docking of GrTX-SIA onto NaV1.6, supported by a p.E1607K mutation, revealed the voltage sensor in domain IV (VSDIV) as being a primary site of action. The biphasic manner in which current inhibition appeared to occur suggested a second, possibly lower-sensitivity binding locus, which was identified as VSDII by using KV2.1/NaV1.6 chimeric voltage-sensor constructs. Subsequently, the NaV1.6p.E782K/p.E838K (VSDII), NaV1.6p.E1607K (VSDIV), and particularly the combined VSDII/VSDIV mutant lost virtually all susceptibility to GrTX-SIA. Together with existing literature, our data suggest that GrTX-SIA recognizes modules in NaV channel VSDs that are conserved among ion channel families, thereby allowing it to act as a comprehensive ion channel gating modifier peptide.


Asunto(s)
Activación del Canal Iónico , Venenos de Araña , Animales , Humanos , Venenos de Araña/farmacología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/genética , Células HEK293 , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/genética , Xenopus laevis
4.
Int J Biol Macromol ; 275(Pt 1): 133658, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969044

RESUMEN

Venomous toxins hold immense value as tools in elucidating the intricate structure and underlying mechanisms of ion channels. In this article, we identified of two novel toxins, Hainantoxin-XXI (HNTX-XXI) and Hainantoxin-XXII (HNTX-XXII), derived from the venom of the Chinese spider Ornithoctonus hainana. HNTX-XXI, boasting a molecular weight of 6869.095 Da, comprises 64 amino acid residues and contains 8 cysteines. Meanwhile, HNTX-XXII, with a molecular weight of 8623.732 Da, comprises 77 amino acid residues and contains 12 cysteines. Remarkably, we discovered that both HNTX-XXI and HNTX-XXII possess the ability to activate TRPV1. They activated TRPV1 with EC50 values of 3.6 ± 0.19 µM and 862 ± 56 nM, respectively. Furthermore, the current generated by the activation of TRPV1 by these toxins can be rapidly blocked by ruthenium red. Intriguingly, our analysis revealed that the interaction between HNTX-XXI and TRPV1 is mediated by three key amino acid residues: L465, V469, and D471. Similarly, the interaction between HNTX-XXII and TRPV1 is facilitated by four key amino acid residues: A657, F659, E600, and R601. These findings provide profound insights into the molecular basis of toxin-TRPV1 interactions and pave the way for future research exploring the therapeutic potential of these toxic peptides.


Asunto(s)
Venenos de Araña , Canales Catiónicos TRPV , Animales , Humanos , Secuencia de Aminoácidos , Células HEK293 , Unión Proteica , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética
5.
Toxicon ; 247: 107810, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38880255

RESUMEN

Spider-derived peptides with insecticidal, antimicrobial and/or cytolytic activities, also known as spider venom antimicrobial peptides (AMPs), can be found in the venoms of RTA-clade spiders. They show translational potential as therapeutic leads. A set of 52 AMPs has been described in the Chinese wolf spider (Lycosa shansia), and many have been shown to exhibit antibacterial effects. Here we explored the potential to enhance their antimicrobial activity using bioengineering. We generated a panel of artificial derivatives of an A-family peptide and screened their activity against selected microbial pathogens, vertebrate cells and insects. In several cases, we increased the antimicrobial activity of the derivatives while retaining the low cytotoxicity of the parental molecule. Furthermore, we injected the peptides into adult Drosophila suzukii and found no evidence of insecticidal effects, confirming the low levels of toxicity. Our data therefore suggest that spider venom linear peptides naturally defend the venom gland against microbial colonization and can be modified into more potent antimicrobial agents that could help to battle infectious diseases in the future.


Asunto(s)
Venenos de Araña , Arañas , Animales , Venenos de Araña/química , Venenos de Araña/farmacología , Venenos de Araña/toxicidad , Drosophila/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Antiinfecciosos/farmacología , Insecticidas/farmacología , Humanos
6.
J Proteome Res ; 23(6): 2028-2040, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38700954

RESUMEN

Nasopharyngeal carcinoma (NPC) is a prevalent malignancy that usually occurs among the nose and throat. Due to mild initial symptoms, most patients are diagnosed in the late stage, and the recurrence rate of tumors is high, resulting in many deaths every year. Traditional radiotherapy and chemotherapy are prone to causing drug resistance and significant side effects. Therefore, searching for new bioactive drugs including anticancer peptides is necessary and urgent. LVTX-8 is a peptide toxin synthesized from the cDNA library of the spider Lycosa vittata, which is consisting of 25 amino acids. In this study, a series of in vitro cell experiments such as cell toxicity, colony formation, and cell migration assays were performed to exam the anticancer activity of LVTX-8 in NPC cells (5-8F and CNE-2). The results suggested that LVTX-8 significantly inhibited cell proliferation and migration of NPC cells. To find the potential molecular targets for the anticancer capability of LVTX-8, high-throughput proteomic and bioinformatics analysis were conducted on NPC cells. The results identified EXOSC1 as a potential target protein with significantly differential expression levels under LVTX-8+/LVTX-8- conditions. The results in this research indicate that spider peptide toxin LVTX-8 exhibits significant anticancer activity in NPC, and EXOSC1 may serve as a target protein for its anticancer activity. These findings provide a reference for the development of new therapeutic drugs for NPC and offer new ideas for the discovery of biomarkers related to NPC diagnosis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (https://proteomecentral.proteomexchange.org) via the iProX partner repository with the data set identifier PXD050542.


Asunto(s)
Antineoplásicos , Movimiento Celular , Proliferación Celular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteómica , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Proteómica/métodos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Venenos de Araña/farmacología , Venenos de Araña/química , Animales , Péptidos/farmacología , Péptidos/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
7.
Pestic Biochem Physiol ; 201: 105853, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685212

RESUMEN

Ion channels on cell membrane are molecular targets of more than half peptide neurotoxins from spiders. From Pardosa pseudoannulata, a predatory spider on a range of insect pests, we characterized a peptide neurotoxin PPTX-04 with an insecticidal activity. PPTX-04 showed high toxicity to Nilaparvata lugens, a main prey of P. pseudoannulata, and the toxicity was not affected by the resistance to etofenprox (IUPAC chemical name:1-ethoxy-4-[2-methyl-1-[(3-phenoxyphenyl)methoxy]propan-2-yl]benzene, purity: 99%). On N. lugens voltage-gated sodium channel NlNav1 expressed in Xenopus oocytes, PPTX-04 prolonged the channel opening and induced tail currents, which is similar to pyrethroid insecticides. However, PPTX-04 potency on NlNav1 was not affected by mutations conferring pyrethroid resistance in insects, which revealed that PPTX-04 and pyrethroids should act on different receptors in NlNav1. In contrast, two mutations at the extracellular site 4 significantly reduced PPTX-04 potency, which indicated that PPTX-04 would act on a potential receptor containing the site 4 in NlNav1. The result from the molecular docking supported the conclusion that the binding pocket of PPTX-04 in NlNav1 should contain the site 4. In summary, PPTX-04 had high insecticidal activity through acting on a distinct receptor site in insect Nav, and was a potential resource to control insect pests and manage resistance to pyrethroids.


Asunto(s)
Insecticidas , Neurotoxinas , Venenos de Araña , Arañas , Canales de Sodio Activados por Voltaje , Animales , Insecticidas/farmacología , Insecticidas/química , Venenos de Araña/química , Venenos de Araña/farmacología , Venenos de Araña/genética , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/genética , Neurotoxinas/farmacología , Neurotoxinas/toxicidad , Piretrinas/farmacología , Hemípteros/efectos de los fármacos , Oocitos/efectos de los fármacos , Xenopus laevis , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química
8.
Toxicon ; 243: 107717, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38614245

RESUMEN

Cancer-related pain is considered one of the most prevalent symptoms for those affected by cancer, significantly influencing quality of life and treatment outcomes. Morphine is currently employed for analgesic treatment in this case, however, chronic use of this opioid is limited by the development of analgesic tolerance and adverse effects, such as digestive and neurological disorders. Alternative therapies, such as ion channel blockade, are explored. The toxin Phα1ß has demonstrated efficacy in blocking calcium channels, making it a potential candidate for alleviating cancer-related pain. This study aims to assess the antinociceptive effects resulting from intravenous administration of the recombinant form of Phα1ß (r-Phα1ß) in an experimental model of cancer-related pain in mice, tolerant or not to morphine. The model of cancer-induced pain was used to evaluate these effects, with the injection of B16F10 cells, followed by the administration of the r-Phα1ß, and evaluation of the mechanical threshold by the von Frey test. Also, adverse effects were assessed using a score scale, the rotarod, and open field tests. Results indicate that the administration of r-Phα1ß provoked antinociception in animals with cancer-induced mechanical hyperalgesia, with or without morphine tolerance. Previous administration of r-Phα1ß was able to recover the analgesic activity of morphine in animals tolerant to this opioid. r-Phα1ß was proved safe for these parameters, as no adverse effects related to motor and behavioral activity were observed following intravenous administration. This study suggests that the concomitant use of morphine and r-Phα1ß could be a viable strategy for pain modulation in cancer patients.


Asunto(s)
Administración Intravenosa , Dolor en Cáncer , Tolerancia a Medicamentos , Morfina , Venenos de Araña , Animales , Ratones , Analgésicos/uso terapéutico , Analgésicos/farmacología , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/administración & dosificación , Dolor en Cáncer/tratamiento farmacológico , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Morfina/administración & dosificación , Morfina/uso terapéutico , Morfina/farmacología , Proteínas Recombinantes/uso terapéutico , Venenos de Araña/farmacología , Venenos de Araña/uso terapéutico
9.
Mol Pharmacol ; 105(3): 144-154, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739813

RESUMEN

A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Arañas , Humanos , Animales , Esfingomielina Fosfodiesterasa , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Ceramidas , Fosfatos , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/metabolismo
10.
Toxins (Basel) ; 15(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38133172

RESUMEN

The escalating prevalence of antibiotic-resistant bacteria poses an immediate and grave threat to public health. Antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional antibiotics. Animal venom comprises a diverse array of bioactive compounds, which can be a rich source for identifying new functional peptides. In this study, we identified a toxin peptide, Lycotoxin-Pa1a (Lytx-Pa1a), from the transcriptome of the Pardosa astrigera spider venom gland. To enhance its functional properties, we employed an in silico approach to design a novel hybrid peptide, KFH-Pa1a, by predicting antibacterial and cytotoxic functionalities and incorporating the amino-terminal Cu(II)- and Ni(II) (ATCUN)-binding motif. KFH-Pa1a demonstrated markedly superior antimicrobial efficacy against pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa, compared to Lytx-Pa1a. Notably, KFH-Pa1a exerted several distinct mechanisms, including the disruption of the bacterial cytoplasmic membrane, the generation of intracellular ROS, and the cleavage and inhibition of bacterial DNA. Additionally, the hybrid peptide showed synergistic activity when combined with conventional antibiotics. Our research not only identified a novel toxin peptide from spider venom but demonstrated in silico-based design of hybrid AMP with strong antimicrobial activity that can contribute to combating MDR pathogens, broadening the utilization of biological resources by incorporating computational approaches.


Asunto(s)
Antiinfecciosos , Venenos de Araña , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Bacterias , Venenos de Araña/farmacología , Pruebas de Sensibilidad Microbiana
11.
Org Lett ; 25(24): 4439-4444, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37306339

RESUMEN

Hi1a is a naturally occurring bivalent spider-venom peptide that is being investigated as a promising molecule for limiting ischemic damage in strokes, myocardial infarction, and organ transplantation. However, the challenges associated with the synthesis and production of the peptide in large quantities have slowed the progress in this area; hence, access to synthetic Hi1a is an essential milestone for the development of Hi1a as a pharmacological tool and potential therapeutic.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Péptidos , Ligadura , Péptidos/química , Venenos de Araña/metabolismo , Venenos de Araña/farmacología , Accidente Cerebrovascular Isquémico/fisiopatología , Infarto del Miocardio/fisiopatología
12.
Toxins (Basel) ; 15(6)2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37368679

RESUMEN

Phα1ß (PnTx3-6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1ß administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1ß and its 15N-labeled analogue. Spatial structure and dynamics of Phα1ß were determined via NMR spectroscopy. The N-terminal domain (Ala1-Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41-Cys52) stapled to ICK by two disulfides exhibits the µs-ms time-scale fluctuations. The Phα1ß structure with the disulfide bond patterns Cys1-5, Cys2-7, Cys3-12, Cys4-10, Cys6-11, Cys8-9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1ß has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1ß significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1ß as a gating modifier toxin, probably interacting with S1-S4 gating domains from a membrane-bound state.


Asunto(s)
Miniproteínas Nodales de Cistina , Venenos de Araña , Arañas , Toxinas Biológicas , Ratas , Animales , Canal Catiónico TRPA1/genética , Arañas/química , Neurotoxinas , Espectroscopía de Resonancia Magnética , Disulfuros , Venenos de Araña/farmacología , Venenos de Araña/química
13.
Eur J Pharmacol ; 954: 175855, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37391009

RESUMEN

Clinical approval of the glucagon-like peptide-1 (GLP-1) mimetic exenatide for the treatment of type 2 diabetes highlights the therapeutic effectiveness of venom-derived peptides. In the present study, we examined and characterised the glucose-lowering potential of synthetic Jingzhaotoxin IX and Jingzhaotoxin XI peptides, which were originally isolated from the venom of the Chinese earth tarantula Chilobrachys jingzhao. Following confirmation of lack of beta-cell toxicity of synthetic peptides, assessment of enzymatic stability and effects on in vitro beta-cell function were studied, alongside putative mechanisms. Glucose homeostatic and appetite suppressive actions of Jingzhaotoxin IX and Jingzhaotoxin XI alone, or in combination with exenatide, were then assessed in normal overnight fasted C57BL/6 mice. Synthetic Jingzhaotoxin peptides were non-toxic and exhibited a decrease in mass of 6 Da in Krebs-Ringer bicarbonate buffer suggesting inhibitor cysteine knot (ICK)-like formation, but interestingly were liable to plasma enzyme degradation. The Jingzhaotoxin peptides evoked prominent insulin secretion from BRIN BD11 beta-cells, with activity somewhat characteristic of Kv2.1 channel binding. In addition, Jingzhaotoxin peptides enhanced beta-cell proliferation and provided significant protection against cytokine-induced apoptosis. When injected co-jointly with glucose, the Jingzhaotoxin peptides slightly decreased blood-glucose levels but had no effect on appetite in overnight fasted mice. Whilst the Jingzhaotoxin peptides did not enhance exenatide-induced benefits on glucose homeostasis, they augmented exenatide-mediated suppression of appetite. Taken together, these data highlight the therapeutic potential of tarantula venom-derived peptides, such as Jingzhaotoxin IX and Jingzhaotoxin XI either alone or in combination with exenatide, for diabetes and related obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Venenos de Araña , Arañas , Ratones , Animales , Exenatida/farmacología , Exenatida/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Venenos de Araña/farmacología , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/metabolismo , Glucosa/metabolismo , Arañas/metabolismo , Insulina/metabolismo , Hipoglucemiantes
14.
Toxins (Basel) ; 15(5)2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37235338

RESUMEN

The venoms of spiders from the RTA (retro-lateral tibia apophysis) clade contain diverse short linear peptides (SLPs) that offer a rich source of therapeutic candidates. Many of these peptides have insecticidal, antimicrobial and/or cytolytic activities, but their biological functions are unclear. Here, we explore the bioactivity of all known members of the A-family of SLPs previously identified in the venom of the Chinese wolf spider (Lycosa shansia). Our broad approach included an in silico analysis of physicochemical properties and bioactivity profiling for cytotoxic, antiviral, insecticidal and antibacterial activities. We found that most members of the A-family can form α-helices and resemble the antibacterial peptides found in frog poison. The peptides we tested showed no cytotoxic, antiviral or insecticidal activities but were able to reduce the growth of bacteria, including clinically relevant strains of Staphylococcus epidermidis and Listeria monocytogenes. The absence of insecticidal activity may suggest that these peptides have no role in prey capture, but their antibacterial activity may help to defend the venom gland against infection.


Asunto(s)
Insecticidas , Venenos de Araña , Arañas , Animales , Ponzoñas , Péptidos/farmacología , Péptidos/química , Insecticidas/química , Antibacterianos/farmacología , Antibacterianos/química , Arañas/química , Venenos de Araña/farmacología , Venenos de Araña/química
15.
Cells ; 12(7)2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37048096

RESUMEN

Dendritic cells (DCs) vaccine is a potential tool for oncoimmunotherapy. However, it is known that this therapeutic strategy has failed in solid tumors, making the development of immunoadjuvants highly relevant. Recently, we demonstrated that Phoneutria nigriventer spider venom (PnV) components are cytotoxic to glioblastoma (GB) and activate macrophages for an antitumor profile. However, the effects of these molecules on the adaptive immune response have not yet been evaluated. This work aimed to test PnV and its purified fractions in DCs in vitro. For this purpose, bone marrow precursors were collected from male C57BL6 mice, differentiated into DCs and treated with venom or PnV-isolated fractions (F1-molecules < 3 kDa, F2-3 to 10 kDa and F3->10 kDa), with or without costimulation with human GB lysate. The results showed that mainly F1 was able to activate DCs, increasing the activation-dependent surface marker (CD86) and cytokine release (IL-1ß, TNF-α), in addition to inducing a typical morphology of mature DCs. From the F1 purification, a molecule named LW9 was the most effective, and mass spectrometry showed it to be a peptide. The present findings suggest that this molecule could be an immunoadjuvant with possible application in DC vaccines for the treatment of GB.


Asunto(s)
Glioblastoma , Venenos de Araña , Ratones , Masculino , Humanos , Animales , Glioblastoma/terapia , Venenos de Araña/farmacología , Ratones Endogámicos C57BL , Diferenciación Celular , Células Dendríticas
16.
Curr Protein Pept Sci ; 24(5): 365-379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37018532

RESUMEN

Ion channels play critical roles in generating and propagating action potentials and in neurotransmitter release at a subset of excitatory and inhibitory synapses. Dysfunction of these channels has been linked to various health conditions, such as neurodegenerative diseases and chronic pain. Neurodegeneration is one of the underlying causes of a range of neurological pathologies, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, brain injury, and retinal ischemia. Pain is a symptom that can serve as an index of the severity and activity of a disease condition, a prognostic indicator, and a criterion of treatment efficacy. Neurological disorders and pain are conditions that undeniably impact a patient's survival, health, and quality of life, with possible financial consequences. Venoms are the best-known natural source of ion channel modulators. Venom peptides are increasingly recognized as potential therapeutic tools due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. These include peptides that potently and selectively modulate a range of targets, such as enzymes, receptors, and ion channels. Thus, components of spider venoms hold considerable capacity as drug candidates for alleviating or reducing neurodegeneration and pain. This review aims to summarize what is known about spider toxins acting upon ion channels, providing neuroprotective and analgesic effects.


Asunto(s)
Analgesia , Venenos de Araña , Arañas , Animales , Venenos de Araña/farmacología , Neuroprotección , Calidad de Vida , Canales Iónicos , Péptidos/farmacología , Péptidos/uso terapéutico , Dolor/tratamiento farmacológico
17.
FEBS J ; 290(14): 3688-3702, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36912793

RESUMEN

Venom-derived peptides targeting ion channels involved in pain are regarded as a promising alternative to current, and often ineffective, chronic pain treatments. Many peptide toxins are known to specifically and potently block established therapeutic targets, among which the voltage-gated sodium and calcium channels are major contributors. Here, we report on the discovery and characterization of a novel spider toxin isolated from the crude venom of Pterinochilus murinus that shows inhibitory activity at both hNaV 1.7 and hCaV 3.2 channels, two therapeutic targets implicated in pain pathways. Bioassay-guided HPLC fractionation revealed a 36-amino acid peptide with three disulfide bridges named µ/ω-theraphotoxin-Pmu1a (Pmu1a). Following isolation and characterization, the toxin was chemically synthesized and its biological activity was further assessed using electrophysiology, revealing Pmu1a to be a toxin that potently blocks both hNaV 1.7 and hCaV 3. Nuclear magnetic resonance structure determination of Pmu1a shows an inhibitor cystine knot fold that is the characteristic of many spider peptides. Combined, these data show the potential of Pmu1a as a basis for the design of compounds with dual activity at the therapeutically relevant hCaV 3.2 and hNaV 1.7 voltage-gated channels.


Asunto(s)
Venenos de Araña , Arañas , Animales , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Venenos de Araña/farmacología , Venenos de Araña/química , Venenos de Araña/metabolismo , Dolor , Péptidos/farmacología , Espectroscopía de Resonancia Magnética , Arañas/metabolismo
18.
Bioorg Chem ; 134: 106451, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907048

RESUMEN

Cytotoxic peptides derived from spider venoms have been considered as promising candidates for anticancer treatment. The novel cell penetrating peptide LVTX-8, which is a 25-residue amphipathic α-helical peptide isolated from spider Lycosa vittata, exhibited potent cytotoxicity and is a potential precursor for further anticancer drug development. Nevertheless, LVTX-8 may be easily degraded by multiple proteases, inducing the proteolytic stability problem and short half-life. In this study, ten LVTX-8-based analogs were rationally designed and the efficient manual synthetic method was established by the DIC/Oxyma based condensation system. The cytotoxicity of synthetic peptides was systematically evaluated against seven cancer cell lines. Seven of the derived peptides exhibited high cytotoxicity towards tested cancer in vitro, which was better than or comparable to that of natural LVTX-8. In particular, both N-acetyl and C-hydrazide modified LVTX-8 (825) and the conjugate methotrexate (MTX)-GFLG-LVTX-8 (827) possessed more durable anticancer efficiency, higher proteolytic stability, as well as lower hemolysis. Finally, we confirmed that LVTX-8 could disrupt the integrity of cell membrane, target the mitochondria and reduce the mitochondrial membrane potential to induce the cell death. Taken together, the structural modifications were conducted on LVTX-8 for the first time and the stability significantly improved derivatives 825 and 827 may provide useful references for the modifications of cytotoxic peptides.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Neoplasias , Venenos de Araña , Humanos , Venenos de Araña/farmacología , Venenos de Araña/química , Venenos de Araña/metabolismo , Antineoplásicos/farmacología , Metotrexato/química , Péptidos de Penetración Celular/química
19.
Sci Rep ; 13(1): 2389, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765114

RESUMEN

Spiders are important predators of insects and their venoms play an essential role in prey capture. Spider venoms have several potential applications as pharmaceutical compounds and insecticides. However, transcriptomic and proteomic analyses of the digestive system (DS) of spiders show that DS is also a rich source of new peptidase inhibitor molecules. Biochemical, transcriptomic and proteomic data of crude DS extracts show the presence of molecules with peptidase inhibitor potential in the spider Nephilingis cruentata. Therefore, the aims of this work were to isolate and characterize molecules with trypsin inhibitory activity. The DS of fasting adult females was homogenized under acidic conditions and subjected to heat treatment. After that, samples were submitted to ion exchange batch and high-performance reverse-phase chromatography. The fractions with trypsin inhibitory activity were confirmed by mass spectrometry, identifying six molecules with inhibitory potential. The inhibitor NcTI (Nephilingis cruentata trypsin inhibitor) was kinetically characterized, showing a KD value of 30.25 nM ± 8.13. Analysis of the tertiary structure by molecular modeling using Alpha-Fold2 indicates that the inhibitor NcTI structurally belongs to the MIT1-like atracotoxin family. This is the first time that a serine peptidase inhibitory function is attributed to this structural family and the inhibitor reactive site residue is identified. Sequence analysis indicates that these molecules may be present in the DS of other spiders and could be associated to the inactivation of prey trypsin (serine peptidase) ingested by the spiders.


Asunto(s)
Venenos de Araña , Arañas , Femenino , Animales , Inhibidores de Tripsina/farmacología , Tripsina , Proteómica , Venenos de Araña/farmacología , Venenos de Araña/química , Sistema Digestivo , Serina
20.
Molecules ; 29(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202621

RESUMEN

Spiders (Araneae), having thrived for over 300 million years, exhibit remarkable diversity, with 47,000 described species and an estimated 150,000 species in existence. Evolving with intricate venom, spiders are nature's skilled predators. While only a small fraction of spiders pose a threat to humans, their venoms contain complex compounds, holding promise as drug leads. Spider venoms primarily serve to immobilize prey, achieved through neurotoxins targeting ion channels. Peptides constitute a major part of these venoms, displaying diverse pharmacological activities, and making them appealing for drug development. Moreover, spider-venom peptides have emerged as valuable tools for exploring human disease mechanisms. This review focuses on the roles of spider-venom peptides in spider survival strategies and their dual significance as pharmaceutical research tools. By integrating recent discoveries, it provides a comprehensive overview of these peptides, their targets, bioactivities, and their relevance in spider survival and medical research.


Asunto(s)
Investigación Biomédica , Venenos de Araña , Humanos , Desarrollo de Medicamentos , Neurotoxinas , Péptidos/farmacología , Venenos de Araña/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA