Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.139
Filtrar
1.
J Therm Biol ; 124: 103966, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39270569

RESUMEN

Understanding animal's behaviour and adaptation in the face of threats and predators under different biotic and abiotic conditions is fundamental in ecology. In this study we examined defensive behaviour of Buthus atlantis scorpion in order to assess how various factors such as temperature, prey type, and threatening conditions influence stinging behaviour, venom usage and regeneration. Our study had revealed that stings frequency was significantly lower in cooler temperature compared to the medium and warm temperature. Threatening condition had no significant effect in medium and warmer temperature, the difference between the two conditions was only significant in the cooler temperature. Conversely, we had shown that venom expenditure in B. atlantis is regulated by both temperature and threatening conditions. Our results show that scorpions maintained in higher temperatures yielded the greatest amount of venom compared to those in lower temperatures. Analyses of proteins concentration according to temperature and diet variation had revealed that scorpions placed in intermediate (25 °C) and warmer temperature (40 °C) had a significantly higher venom proteins concentration when compared to the cooler temperature (10 °C). Results also showed that scorpions adjust their venom usage based on their perception of danger, which can be influenced by temperature.


Asunto(s)
Venenos de Escorpión , Escorpiones , Temperatura , Animales , Escorpiones/fisiología , Dieta/veterinaria , Picaduras de Escorpión , Masculino , Conducta Predatoria , Regeneración , Conducta Animal , Femenino
2.
Tunis Med ; 102(9): 529-536, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39287344

RESUMEN

INTRODUCTION: Scorpion envenomation constitutes a major public health issue in Tunisia, especially in arid regions such as the Gulf of Gabes. It is necessary to understand the epidemiological and clinical characteristics of this condition and the importance of early management. AIM: This study aims to assess the epidemiological and clinical profile of patients admitted to the emergency department of Gabes University Hospital for scorpion envenomation, as well as the timing of management and intra-hospital evolution. METHODS: A retrospective descriptive study of 60 patients admitted for scorpion envenomation to the Acute Assessement unit at the Emergency Department of the Gabes University Hospital from January 2020 to January 2023. RESULTS: The average age was 35 years [1-85 years]. A slight male predominance (51.7%) was noted. Patients with chronic somatic diseases accounted for (25%) of our series. The predominant scorpion species was Androctonus australis (71.7%). The majority of incidents occurred during the nighttime (71.7%). Most patients were of rural origin (58.3%). The most common sting sites were the lower limbs (48.8%) and upper limbs (36.7%). Scorpion envenomation stages at admission were: Stage I (3.3%), Stage II (83.3%), and Stage III (8.33%). The average time to management was 2 hours. Patients classified as Stage II at admission or afterward were seen after an average of 3 hours. Patients initially classified as Stage III were seen after an average of 3 hours and 30 minutes, and those classified as Stage III during the hospitalization were seen after an average of 4 hours. The average time to management for patients transferred from the Emergency Department to the Intensive Care Unit was 4 hours. CONCLUSION: This study highlights the importance of early management of scorpion envenomation.


Asunto(s)
Servicio de Urgencia en Hospital , Picaduras de Escorpión , Escorpiones , Humanos , Masculino , Picaduras de Escorpión/epidemiología , Picaduras de Escorpión/terapia , Picaduras de Escorpión/diagnóstico , Femenino , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Servicio de Urgencia en Hospital/estadística & datos numéricos , Anciano , Adolescente , Túnez/epidemiología , Niño , Adulto Joven , Anciano de 80 o más Años , Preescolar , Animales , Lactante , Antivenenos/uso terapéutico , Antivenenos/administración & dosificación , Venenos de Escorpión
3.
World J Microbiol Biotechnol ; 40(10): 326, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39299979

RESUMEN

Fusing insect derived neurotoxic peptides with Galanthus nivalis agglutinin (GNA) has been shown to enhance the insecticidal activity of the neuropeptides, especially when administered orally. This study produced a recombinant scorpion insect specific neurotoxin BjαIT, GNA, and a fusion protein BjαIT/GNA using Pichia pastoris as an expression host. Recombinant rBjαIT/GNA was found to be easily degraded during expression in yeast which and produced a main protein product with a molecular weight of approximately 14 kDa. Cytotoxicity results showed that rBjαIT, rGNA, and rBjαIT/GNA had no toxicity to mammalian NIH/3T3 cells. Adding rBjαIT or rBjαIT/GNA at a concentration as low as 1 ng/mL to insect cell culture medium inhibited the proliferation of insect Sf9 cells, with rBjαIT exhibiting stronger cytotoxicity, while 20 ng/mL rGNA did not inhibit the proliferation of Sf9 cells. Silkworm larval injection results showed that rBjαIT/GNA was the most toxic of the three proteins, followed by rBjαIT, and rGNA. When rBjαIT/GNA was injected at a concentration of 0.129 nmol/g body weight 46.7% of silkworm died within 48 h. Feeding newly hatched silkworms with rBjαIT/GNA at a leaf surface concentration of 40 µg/cm2 resulted in 76.7% mortality within 24 h. However, rBjαIT/GNA showed almost no oral insecticidal activity against second instar silkworms. The results indicated that rBjαIT/GNA has stronger injection insecticidal activity and feeding insecticidal activity than rBjαIT and rGNA individually, making it more suitable for biological control.


Asunto(s)
Bombyx , Insecticidas , Larva , Proteínas Recombinantes de Fusión , Venenos de Escorpión , Animales , Ratones , Insecticidas/farmacología , Larva/efectos de los fármacos , Venenos de Escorpión/química , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/genética , Células Sf9 , Células 3T3 NIH , Administración Oral , Escorpiones , Neurotoxinas , Lectinas de Plantas/farmacología , Saccharomycetales/metabolismo
4.
Biochem Pharmacol ; 227: 116465, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39102991

RESUMEN

In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.


Asunto(s)
Dolor , Venenos de Escorpión , Transducción de Señal , Venenos de Araña , Canales de Sodio Activados por Voltaje , Animales , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Venenos de Escorpión/metabolismo , Venenos de Araña/farmacología , Venenos de Araña/química , Venenos de Araña/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/fisiología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Escorpiones/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Secuencia de Aminoácidos , Arañas/metabolismo
5.
Toxins (Basel) ; 16(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39195737

RESUMEN

Ananteris is a scorpion genus that inhabits dry and seasonal areas of South and Central America. It is located in a distinctive morpho-group of Buthids, the 'Ananteris group', which also includes species distributed in the Old World. Because of the lack of information on venom composition, the study of Ananteris species could have biological and medical relevance. We conducted a venomics analysis of Ananteris platnicki, a tiny scorpion that inhabits Panama and Costa Rica, which shows the presence of putative toxins targeting ion channels, as well as proteins with similarity to hyaluronidases, proteinases, phospholipases A2, members of the CAP-domain family, and hemocyanins, among others. Venom proteolytic and hyaluronidase activities were corroborated. The determination of the primary sequences carried out by mass spectrometry evidences that several peptides are similar to the toxins present in venoms from Old World scorpion genera such as Mesobuthus, Lychas, and Isometrus, but others present in Tityus and Centruroides toxins. Even when this venom displays the characteristic protein families found in all Buthids, with a predominance of putative Na+-channel toxins and proteinases, some identified partial sequences are not common in venoms of the New World species, suggesting its differentiation into a distinctive group separated from other Buthids.


Asunto(s)
Venenos de Escorpión , Escorpiones , Costa Rica , Panamá , Animales , Venenos de Escorpión/química , Secuencia de Aminoácidos , Hialuronoglucosaminidasa/metabolismo , Datos de Secuencia Molecular
6.
J Ethnopharmacol ; 335: 118642, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098623

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Species of the Jatropha genus (Euphorbiaceae) are used indiscriminately in traditional medicine to treat accidents involving venomous animals. Jatropha mutabilis Baill., popularly known as "pinhão-de-seda," is found in the semi-arid region of Northeastern Brazil. It is widely used as a vermifuge, depurative, laxative, and antivenom. AIM OF THE STUDY: Obtaining the phytochemical profile of the latex of Jatropha mutabilis (JmLa) and evaluate its acute oral toxicity and inhibitory effects against the venom of the scorpion Tityus stigmurus (TstiV). MATERIALS AND METHODS: The latex of J. mutabilis (JmLa) was obtained through in situ incisions in the stem and characterized using HPLC-ESI-QToF-MS. Acute oral toxicity was investigated in mice. The protein profile of T. stigmurus venom was obtained by electrophoresis. The ability of latex to interact with venom components (TstiV) was assessed using SDS-PAGE, UV-Vis scanning spectrum, and the neutralization of fibrinogenolytic and hyaluronidase activities. Additionally, the latex was evaluated in vivo for its ability to inhibit local edematogenic and nociceptive effects induced by the venom. RESULTS: The phytochemical profile of the latex revealed the presence of 75 compounds, including cyclic peptides, glycosides, phenolic compounds, alkaloids, coumarins, and terpenoids, among others. No signs of acute toxicity were observed at a dose of 2000 mg/kg (p.o.). The latex interacted with the protein profile of TstiV, inhibiting the venom's fibrinogenolytic and hyaluronidase activities by 100%. Additionally, the latex was able to mitigate local envenomation effects, reducing nociception by up to 56.5% and edema by up to 50% compared to the negative control group. CONCLUSIONS: The latex of Jatropha mutabilis exhibits a diverse phytochemical composition, containing numerous classes of metabolites. It does not present acute toxic effects in mice and has the ability to inhibit the enzymatic effects of Tityus stigmurus venom in vitro. Additionally, it reduces nociception and edema in vivo. These findings corroborate popular reports regarding the antivenom activity of this plant and indicate that the latex has potential for treating scorpionism.


Asunto(s)
Antivenenos , Jatropha , Látex , Extractos Vegetales , Venenos de Escorpión , Escorpiones , Animales , Antivenenos/farmacología , Antivenenos/química , Ratones , Látex/química , Látex/farmacología , Jatropha/química , Venenos de Escorpión/toxicidad , Venenos de Escorpión/química , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Femenino , Animales Ponzoñosos
7.
Toxins (Basel) ; 16(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057941

RESUMEN

Alternative recombinant sources of antivenoms have been successfully generated. The application of such strategies requires the characterization of the venoms for the development of specific neutralizing molecules against the toxic components. Five toxic peptides to mammals from the Mexican scorpion Centruroides villegasi were isolated by chromatographic procedures by means of gel filtration on Sephadex G-50, followed by ion-exchange columns on carboxy-methyl-cellulose (CMC) resins and finally purified by high-performance chromatography (HPLC) columns. Their primary structures were determined by Edman degradation. They contain 66 amino acids and are maintained well packed by four disulfide bridges, with molecular mass from 7511.3 to 7750.1 Da. They are all relatively toxic and deadly to mice and show high sequence identity with known peptides that are specific modifiers of the gating mechanisms of Na+ ion channels of type beta-toxin (ß-ScTx). They were named Cv1 to Cv5 and used to test their recognition by single-chain variable fragments (scFv) of antibodies, using surface plasmon resonance. Three different scFvs generated in our laboratory (10FG2, HV, LR) were tested for recognizing the various new peptides described here, paving the way for the development of a novel type of scorpion antivenom.


Asunto(s)
Péptidos , Venenos de Escorpión , Escorpiones , Anticuerpos de Cadena Única , Animales , Venenos de Escorpión/química , Venenos de Escorpión/toxicidad , Venenos de Escorpión/inmunología , Péptidos/química , Anticuerpos de Cadena Única/química , Humanos , Ratones , Secuencia de Aminoácidos , Antivenenos/inmunología , Antivenenos/química , Antivenenos/farmacología , Animales Ponzoñosos
8.
Int Immunopharmacol ; 138: 112578, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38959539

RESUMEN

Metabolic reprogramming is frequently accompanied by hepatocellular carcinoma (HCC) progression. Disrupted metabolites act as potential biomarkers and drug therapeutic targets for HCC. Peptide extract of scorpion venom (PESV) induces cytotoxic anti-proliferative effects and apoptosis in tumors. However, the action mechanisms of PESV remain unknown. This study aimed to explore the serum metabolic profiles of tumor-bearing mouse model. We generated an orthotopic HCC xenograft mouse model by implanting H22 cells into the left hepatic lobe of male C57BL/6 mice. After surgery, the mice were assigned to two groups randomly: PESV (PESV-treated 40 mg/kg daily, i.g.; n = 6) and control (treated with the solvent equally for 14 d, n = 6) groups. Based on an untargeted metabolomics approach using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, differential metabolites were screened via univariate and multivariate data analyses. A total of 48 differential metabolites in negative ion mode and 63 in positive ion mode were identified in the serum samples. Furthermore, metabolic pathway analysis revealed that aminoacyl-tRNA biosynthesis, amino acid pathway, glutathione metabolism, protein transports, protein digestion and absorption, and cAMP signaling pathways play vital roles in PESV-induced inhibition of tumors. These findings highlight the distinct changes in the metabolic profiles of HCC-bearing mice after PESV treatment, suggesting the potential of the identified metabolic molecules as therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metabolómica , Ratones Endogámicos C57BL , Venenos de Escorpión , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Masculino , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ratones , Línea Celular Tumoral , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Metaboloma/efectos de los fármacos , Modelos Animales de Enfermedad
9.
Sci Rep ; 14(1): 16092, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997408

RESUMEN

Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 µM and 1.54 ± 0.28 µM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.


Asunto(s)
Péptidos , Bloqueadores de los Canales de Potasio , Venenos de Escorpión , Escorpiones , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Escorpiones/química , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Animales , Péptidos/química , Péptidos/farmacología , Humanos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/química , Proteolisis , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/química , Estabilidad Proteica , Secuencia de Aminoácidos , Técnicas de Placa-Clamp , Células HEK293
10.
Toxicon ; 248: 108033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038663

RESUMEN

Scorpion sting is a medical burden globally but especially frequent hotspots of scorpion biodiversity. In Iran, one of those hotspot countries, many fatalities occur in the South as well as the Southwest and are thought to be caused by Hemiscorpius lepturus. Accordingly, those are used for antivenom production. However, recent surveys revealed that indeed a different species Hemiscorpius acanthocercus is responsible for most accidents in the South, while H. lepturus is primarily causing the fatalities in the Southwest and thus Iranian scorpion antivenom needs to be refined in that respect. Such a refined antivenom would need to cover both species of Hemiscorpius. In response, the Iranian Ministry of Health requested the adjustment of the production line from local antivenom suppliers but until today no action has been taken.


Asunto(s)
Antivenenos , Picaduras de Escorpión , Venenos de Escorpión , Escorpiones , Antivenenos/uso terapéutico , Irán , Animales , Picaduras de Escorpión/tratamiento farmacológico , Humanos
11.
Toxicon ; 248: 108039, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084530

RESUMEN

Accidents caused by venomous animals, especially scorpions, are a major public health problem due to the increase in incidence in recent decades, since scorpion species have become well adapted to urbanized environments. Nonetheless, the impact of urbanization in scorpionism is not clear. The objective of this study is to correlate the variation in the incidence of scorpion accidents with the rate of urbanized area. This was a retrospective, epidemiological study of accidents by scorpions in 376 of the most populous Brazilian cities in 2019 and compared to ten years earlier, using Spearman's correlation coefficient. Data were obtained by accessing DATASUS/TABNET and IBGE Cidades platforms. A weak negative correlation between scorpion stings and urbanization was found in 2009 (rs = -0.145). The correlation between the variation in the incidence of scorpionism and the percentage of urbanized area was not significant. Although the highest incidence of scorpionism occurs in-more urbanized environments, there is a wide distribution of scorpion accidents, especially in tropical and subtropical regions due to climatic conditions, the level of urbanization of Brazilian municipalities was not the major factor in the increase of scorpion accidents.


Asunto(s)
Picaduras de Escorpión , Escorpiones , Urbanización , Picaduras de Escorpión/epidemiología , Brasil/epidemiología , Humanos , Animales , Estudios Retrospectivos , Incidencia , Venenos de Escorpión
12.
J Membr Biol ; 257(3-4): 165-205, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38990274

RESUMEN

Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.


Asunto(s)
Péptidos Antimicrobianos , Venenos de Escorpión , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Animales , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Termodinámica
13.
ScientificWorldJournal ; 2024: 9746092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050385

RESUMEN

Background: The expansion of the territory of human habitation leads to inevitable interference in the natural range of distribution of one or another species of animals, some of which may be dangerous for human life. Scorpions-the Arachnida class and order Scorpiones-can be considered as such typical representatives. Scorpions of the Buthidae family pose a particular danger to humans. However, LD50 has not yet been defined for many species of this family, in particular, new representatives of the genus Leiurus. Leiurus macroctenus is a newly described species of scorpion distributed in Oman, and the toxicity of its venom is still unknown. Estimating the LD50 of the venom is the first and most important step in creating the antivenom and understanding the medical significance of the researched animal species. The purpose of this study was to determine the lethal dose (LD100), the maximum tolerated dose (LD0), and the average lethal dose (LD50) in rats when using Leiurus macroctenus scorpion venom. Methods and Results: 15 sexually mature scorpions were used in the study, which were kept in the same conditions and milked by a common method (electric milking). For the study, 60 male rats were used, which were injected intramuscularly with 0.5 ml of venom solution with a gradual increase in the dose (5 groups, 10 rats in each), and 10 rats were injected intramuscularly with physiological solution as control group. LD calculations were done using probit analysis method in the modification of the method by V.B. Prozorovsky. The LD0 of Leiurus macroctenus scorpion venom under the conditions of intramuscular injection was 0.02 mg/kg, LD100 was 0.13 mg/kg, and LD50 was 0.08 ± 0.01 mg/kg. Conclusions: The analysis of scientific publications and other sources of information gives reason to believe that Leiurus macroctenus has one of the highest values of LD50 not only among scorpions but also among all arthropods in the world. All these point to the significant clinical importance of this species of scorpion and require further research that will concern the toxic effect of its venom on various organ systems. Determining the LD50 of the venom for new scorpion species is crucial for creating effective antivenoms and understanding the medical implications of envenomation by this species.


Asunto(s)
Venenos de Escorpión , Escorpiones , Animales , Venenos de Escorpión/toxicidad , Ratas , Dosificación Letal Mediana , Masculino , Animales Ponzoñosos
14.
Artículo en Inglés | MEDLINE | ID: mdl-39025425

RESUMEN

In this study, we report the innovative application of whole-cell patch-clamp electrophysiology in assessing broad-spectrum neutralisation by three different antivenoms, of venoms from the medically significant scorpion genus Centruroides. Envenomations by as many as 21 species from the Centruroides genus result in up to 300,000 envenomations per year in Mexico, which poses significant and potentially life-threatening pathophysiology. We first evaluated the in vitro manifestation of envenomation against two human voltage-gated sodium (hNaV) channel subtypes: hNaV1.4 and hNaV1.5, which are primarily expressed in skeletal muscles and cardiomyocytes, respectively. The neutralisation of venom activity was then characterised for three different antivenoms using a direct competition model against the more potent target, hNaV1.4. While broad-spectrum neutralisation was identified, variation in neutralisation arose for Centruroides elegans, C. limpidus, C. noxius and C. suffusus venoms, despite the presence of a number of these venoms within the immunising mixture. This raises questions regarding the truly "broad" neutralisation capacity of the antivenoms. This study not only extends previous validation of the in vitro investigation of antivenom efficacy utilising the whole-cell patch-clamp technique but also underscores the potential of this animal-free model in exploring cross-reactivity, experimental scalability, and most importantly, informing clinical management practices regarding the administration of antivenom in Mexico.


Asunto(s)
Antivenenos , Venenos de Escorpión , Escorpiones , Animales , Venenos de Escorpión/toxicidad , Antivenenos/farmacología , Humanos , Picaduras de Escorpión/tratamiento farmacológico , Técnicas de Placa-Clamp , Especificidad de la Especie , México , Animales Ponzoñosos
15.
Toxicon ; 246: 107797, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38852745

RESUMEN

The Brazilian Amazon is home to a rich fauna of scorpion species of medical importance, some of them still poorly characterized regarding their biological actions and range of clinical symptoms after envenoming. The Amazonian scorpion species Tityus strandi and Tityus dinizi constitute some of the scorpions in this group, with few studies in the literature regarding their systemic repercussions. In the present study, we characterized the clinical, inflammatory, and histopathological manifestations of T. strandi and T. dinizi envenoming in a murine model using Balb/c mice. The results show a robust clinical response based on clinical score, hyperglycemia, leukocytosis, increased cytokines, and histopathological changes in the kidneys and lungs. Tityus strandi envenomed mice presented more prominent clinical manifestations when compared to Tityus dinizi, pointing to the relevance of this species in the medical scenario, with both species inducing hyperglycemia, leukocytosis, increased cytokine production in the peritoneal lavage, increased inflammatory infiltrate in the lungs, and acute tubular necrosis after T. strandi envenoming. The results presented in this research can help to understand the systemic manifestations of scorpion accidents in humans caused by the target species of the study and point out therapeutic strategies in cases of scorpionism in remote regions of the Amazon.


Asunto(s)
Ratones Endogámicos BALB C , Picaduras de Escorpión , Venenos de Escorpión , Escorpiones , Animales , Venenos de Escorpión/toxicidad , Ratones , Modelos Animales de Enfermedad , Citocinas/metabolismo , Brasil , Leucocitosis/inducido químicamente , Pulmón/patología , Pulmón/efectos de los fármacos , Masculino , Riñón/patología , Riñón/efectos de los fármacos , Femenino
16.
Toxins (Basel) ; 16(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38922152

RESUMEN

Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.


Asunto(s)
Venenos de Escorpión , Escorpiones , Venenos de Escorpión/química , Venenos de Escorpión/genética , Animales , Brasil , Humanos , Xenopus laevis , Activación del Canal Iónico/efectos de los fármacos , Secuencia de Aminoácidos , Animales Ponzoñosos
17.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38885085

RESUMEN

Scorpions, a seemingly primitive, stinging arthropod taxa, are known to exhibit marked diversity in their venom components. These venoms are known for their human pathology, but they are also important as models for therapeutic and drug development applications. In this study, we report a high-quality genome assembly and annotation of the striped bark scorpion, Centruroides vittatus, created with several shotgun libraries. The final assembly is 760 Mb in size, with a BUSCO score of 97.8%, a 30.85% GC, and an N50 of 2.35 Mb. We estimated 36,189 proteins with 37.32% assigned to Gene Ontology (GO) terms in our GO annotation analysis. We mapped venom toxin genes to 18 contigs and 2 scaffolds. We were also able to identify expression differences between venom gland (telson) and body tissue (carapace) with 19 sodium toxin and 14 potassium toxin genes to 18 contigs and 2 scaffolds. This assembly, along with our transcriptomic data, provides further data to investigate scorpion venom genomics.


Asunto(s)
Genoma , Anotación de Secuencia Molecular , Escorpiones , Transcriptoma , Animales , Escorpiones/genética , Venenos de Escorpión/genética , Perfilación de la Expresión Génica , Genómica/métodos , Ontología de Genes , Animales Ponzoñosos
18.
Eur J Pharmacol ; 978: 176704, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38830458

RESUMEN

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.


Asunto(s)
Anticonvulsivantes , Fármacos Neuroprotectores , Péptidos , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Venenos de Escorpión , Convulsiones , Animales , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Venenos de Escorpión/farmacología , Venenos de Escorpión/química , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/química , Pentilenotetrazol , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Calor , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Modelos Animales de Enfermedad
19.
Toxicon ; 247: 107832, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945218

RESUMEN

Morocco is one of the main countries affected in North African with the scorpion envenomations. Faced with the threat, significant morbidity and a major risk of death especially in children, a detailed identification of scorpionic profile of stings remains important for health authorities at national or even regional level. The current study aims to establish the epidemiological, clinical, biological and evolutionary data of the scorpionism by analyzing 383 cases of scorpion stings in children from three age groups (<1 year, 1-5 years and >5 years), admitted at the Regional Hospital Hassan II-Agadir in the Souss Massa region during the period of 9 years and 10 months from January 2013 to October 2022. Our results showed that patients under 1 year of age presented the most severe cases and had the highest mortality rate. However, the clinical signs and symptoms observed illustrated severe damages to vital systems, particularly the cardiovascular, neurological and pulmonary systems, although the signs associated with the latter were present only in cases admitted in grades 2 and 3 for the three age categories studied. Fluctuations in vital constants (temperature and peripheral oxygen saturation, blood pressure, heart rate and respiratory rate), biochemical parameters (ASAT, ALAT, urea and blood creatine, as well as blood sugar) and CBC results revealed major functional disturbances in vital organs, especially in envenomated cases admitted in grade 3. A positive correlation was mentioned between the state of evolution and the various epidemiological parameters, digestive symptoms, as well as signs and symptoms linked to hemodynamic state, general and neurological state. The main interest is to illustrate the seriousness of scorpion envenomations, especially in the high-risk population, for whom an improved therapeutic approach in health centers will undoubtedly be reinforced, and the admission of immunotherapy, as a fundamental part of the treatment, remains important.


Asunto(s)
Picaduras de Escorpión , Escorpiones , Marruecos/epidemiología , Humanos , Niño , Preescolar , Lactante , Adolescente , Picaduras de Escorpión/epidemiología , Animales , Masculino , Venenos de Escorpión , Femenino
20.
Int J Biol Macromol ; 275(Pt 1): 133461, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945343

RESUMEN

Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % ß-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.


Asunto(s)
Anticuerpos de Cadena Única , Animales , Ratones , Conejos , Secuencia de Aminoácidos , Animales Ponzoñosos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/farmacología , Expresión Génica , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/química , Neurotoxinas/genética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Venenos de Escorpión/antagonistas & inhibidores , Venenos de Escorpión/química , Venenos de Escorpión/genética , Escorpiones , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos de Cadena Única/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA