Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.536
Filtrar
1.
Sci Rep ; 14(1): 11720, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778154

RESUMEN

We studied the inhibitory actions of docosahexaenoic acid (DHA) on the contractions induced by carbachol (CCh), angiotensin II (Ang II), and bradykinin (BK) in guinea pig (GP) gastric fundus smooth muscle (GFSM), particularly focusing on the possible inhibition of store-operated Ca2+ channels (SOCCs). DHA significantly suppressed the contractions induced by CCh, Ang II, and BK; the inhibition of BK-induced contractions was the strongest. Although all contractions were greatly dependent on external Ca2+, more than 80% of BK-induced contractions remained even in the presence of verapamil, a voltage-dependent Ca2+ channel inhibitor. BK-induced contractions in the presence of verapamil were not suppressed by LOE-908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) but were suppressed by SKF-96365 (an SOCC and ROCC inhibitor). BK-induced contractions in the presence of verapamil plus LOE-908 were strongly inhibited by DHA. Furthermore, DHA inhibited GFSM contractions induced by cyclopiazonic acid (CPA) in the presence of verapamil plus LOE-908 and inhibited the intracellular Ca2+ increase due to Ca2+ addition in CPA-treated 293T cells. These findings indicate that Ca2+ influx through SOCCs plays a crucial role in BK-induced contraction in GP GFSM and that this inhibition by DHA is a new mechanism by which this fatty acid inhibits GFSM contractions.


Asunto(s)
Angiotensina II , Bradiquinina , Carbacol , Ácidos Docosahexaenoicos , Fundus Gástrico , Contracción Muscular , Músculo Liso , Animales , Cobayas , Ácidos Docosahexaenoicos/farmacología , Bradiquinina/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Carbacol/farmacología , Contracción Muscular/efectos de los fármacos , Angiotensina II/farmacología , Fundus Gástrico/efectos de los fármacos , Fundus Gástrico/fisiología , Fundus Gástrico/metabolismo , Verapamilo/farmacología , Calcio/metabolismo , Masculino , Humanos , Canales de Calcio/metabolismo , Células HEK293 , Bloqueadores de los Canales de Calcio/farmacología , Imidazoles/farmacología
2.
Ann Clin Microbiol Antimicrob ; 23(1): 36, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664815

RESUMEN

BACKGROUND: Tuberculosis (TB) continues to pose a threat to communities worldwide and remains a significant public health issue in several countries. We assessed the role of heteroresistance and efflux pumps in bedaquiline (BDQ)-resistant Mycobacterium tuberculosis isolates. METHODS: Nineteen clinical isolates were included in the study, of which fifteen isolates were classified as MDR or XDR, while four isolates were fully susceptible. To evaluate BDQ heteroresistance, the Microplate Alamar Blue Assay (MABA) method was employed. For screening mixed infections, MIRU-VNTR was performed on clinical isolates. Mutations in the atpE and Rv0678 genes were determined based on next-generation sequencing data. Additionally, real-time PCR was applied to assess the expression of efflux pump genes in the absence and presence of verapamil (VP). RESULTS: All 15 drug-resistant isolates displayed resistance to BDQ. Among the 19 total isolates, 21.05% (4/19) exhibited a heteroresistance pattern to BDQ. None of the isolates carried a mutation of the atpE and Rv0678 genes associated with BDQ resistance. Regarding the MIRU-VNTR analysis, most isolates (94.73%) showed the Beijing genotype. Fifteen (78.9%) isolates showed a significant reduction in BDQ MIC after VP treatment. The efflux pump genes of Rv0676c, Rv1258c, Rv1410c, Rv1634, Rv1819, Rv2459, Rv2846, and Rv3065 were overexpressed in the presence of BDQ. CONCLUSIONS: Our results clearly demonstrated the crucial role of heteroresistance and efflux pumps in BDQ resistance. Additionally, we established a direct link between the Rv0676c gene and BDQ resistance. The inclusion of VP significantly reduced the MIC of BDQ in both drug-susceptible and drug-resistant clinical isolates.


Asunto(s)
Antituberculosos , Diarilquinolinas , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Diarilquinolinas/farmacología , Humanos , Antituberculosos/farmacología , Irán , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación , Proteínas de Transporte de Membrana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Verapamilo/farmacología
3.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678669

RESUMEN

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Asunto(s)
Flavonas , Lipopolisacáridos , Factor de Transcripción STAT1 , Factor de Transcripción STAT3 , Proteína 3 Supresora de la Señalización de Citocinas , Verapamilo , Animales , Verapamilo/farmacología , Factor de Transcripción STAT1/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Flavonas/farmacología , Flavonas/uso terapéutico , Ratones , Factor de Transcripción STAT3/metabolismo , Masculino , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Sepsis/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Células Cultivadas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563869

RESUMEN

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Asunto(s)
Antibacterianos , Bloqueadores de los Canales de Calcio , Calcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamilo , Pez Cebra , Animales , Bloqueadores de los Canales de Calcio/farmacología , Calcio/metabolismo , Verapamilo/farmacología , Neomicina/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidad , Antibacterianos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Ototoxicidad/prevención & control , Aminoglicósidos/toxicidad , Sistema de la Línea Lateral/efectos de los fármacos , Larva/efectos de los fármacos , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/prevención & control
5.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572960

RESUMEN

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Asunto(s)
Antibacterianos , Levofloxacino , Pruebas de Sensibilidad Microbiana , Mycobacterium abscessus , Reserpina , Levofloxacino/farmacología , Antibacterianos/farmacología , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/genética , Reserpina/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Girasa de ADN/genética , Girasa de ADN/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Farmacorresistencia Bacteriana/genética , Humanos , Verapamilo/farmacología
6.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555048

RESUMEN

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Asunto(s)
Calcio , Miocitos Cardíacos , Piruvaldehído , Ratas Wistar , Animales , Piruvaldehído/toxicidad , Ratas , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Masculino , Guanidinas/farmacología , Canales de Calcio Tipo L/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Verapamilo/farmacología , Contracción Miocárdica/efectos de los fármacos
7.
Photobiomodul Photomed Laser Surg ; 42(4): 314-320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38536111

RESUMEN

Background: Acinetobacter baumannii, a nosocomial pathogen, poses a major public health problem due to generating resistance to several antimicrobial agents. Antimicrobial photodynamic inactivation (APDI) employs a nontoxic dye as a photosensitizer (PS) and light to produce reactive oxygen species that destroy bacterial cells. The intracellular concentration of PS could be affected by factors such as the function of efflux pumps to emit PS from the cytosol. Objective: To evaluate the augmentation effect of an efflux pump inhibitor, verapamil, three multidrug-resistant A. baumannii were subjected to APDI by erythrosine B (EB). Methods and results: The combination of EB and verapamil along with irradiation at 530 nm induced a lethal effect and more than 3 log colony-forming unit reduction to all A. baumannii strains in planktonic state. In contrast, EB and irradiation alone could produce only a sublethal effect on two of the strains. Conclusions: These data suggest that verapamil increases the intracellular concentration of EB, which potentiates the lethal efficacy of APDI. Verapamil could be applied with EB and green light to improve their antimicrobial efficacy against A. baumannii-localized infections.


Asunto(s)
Acinetobacter baumannii , Farmacorresistencia Bacteriana Múltiple , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verapamilo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/efectos de la radiación , Verapamilo/farmacología , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Eritrosina/farmacología , Humanos
8.
J Pharm Sci ; 113(6): 1674-1681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432625

RESUMEN

Lung cancer metastasis often leads to a poor prognosis for patients. Mesenchymal-epithelial transition (MET) is one key process associated with metastasis. MET has also been linked to multidrug drug resistance (MDR). MDR arises from the overactivity of drug efflux transporters such as P-glycoprotein (P-gp) which operate at the cell plasma membrane, under the regulatory control of the scaffold proteins ezrin (Ezr), radixin (Rdx), and moesin (Msn), collectively known as ERM proteins. The current study was intended to clarify the functional changing of P-gp and the underlying mechanisms in the context of dexamethasone (DEX)-induced MET in lung cancer cells. We found that the mRNA and membrane protein expression of Ezr and P-gp was increased in response to DEX treatment. Moreover, the DEX-treated group exhibited an increase in Rho123 efflux, and it was reversed by treatment with the P-gp inhibitor verapamil or Ezr siRNA. The decrease in cell viability with paclitaxel (PTX) treatment was mitigated by pretreatment with DEX. The increased expression and activation of P-gp during the progression of lung cancer MET was regulated by Ezr. The regulatory mechanism of P-gp expression and activity may differ depending on the cell status.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Dexametasona , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Paclitaxel , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Dexametasona/farmacología , Línea Celular Tumoral , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Paclitaxel/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Verapamilo/farmacología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Células A549
9.
Parasitol Res ; 123(3): 166, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506929

RESUMEN

The hemoparasite Trypanosoma equiperdum belongs to the Trypanozoon subgenus and includes several species that are pathogenic to animals and humans in tropical and subtropical areas across the world. As with all eukaryotic organisms, Ca2+ is essential for these parasites to perform cellular processes thus ensuring their survival across their life cycle. Despite the established paradigm to study proteins related to Ca2+ homeostasis as potential drug targets, so far little is known about Ca2+ entry into trypanosomes. Therefore, in the present study, the presence of a plasma membrane Ca2+-channel in T. equiperdum (TeCC), activated by sphingosine and inhibited by verapamil, is described. The TeCC was cloned and analyzed using bioinformatic resources, which confirmed the presence of several domains, motifs, and a topology similar to the Ca2+ channels found in higher eukaryotes. Biochemical and confocal microscopy assays using antibodies raised against an internal region of human L-type Ca2+ channels indicate the presence of a protein with similar predicted molar mass to the sequence analyzed, located at the plasma membrane of T. equiperdum. Physiological assays based on Fura-2 signals and Mn2+ quenching performed on whole parasites showed a unidirectional Ca2+ entry, which is activated by sphingosine and blocked by verapamil, with the distinctive feature of insensitivity to nifedipine and Bay K 8644. This suggests a second Ca2+ entry for T. equiperdum, different from the store-operated Ca2+ entry (SOCE) previously described. Moreover, the evidence presented here for the TeCC indicates molecular and pharmacological differences with their mammal counterparts, which deserve further studies to evaluate the potential of this channel as a drug target.


Asunto(s)
Esfingosina , Trypanosoma , Animales , Humanos , Esfingosina/farmacología , Verapamilo/farmacología , Membrana Celular/metabolismo , Calcio/metabolismo , Mamíferos
10.
Front Biosci (Landmark Ed) ; 29(2): 47, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38420828

RESUMEN

BACKGROUND: The leaves of Origanum majorana (O. majorana) are traditionally renowned for treating diarrhea and gut spasms. This study was therefore planned to evaluate its methanolic extract. METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the phytochemicals, and Swiss albino mice were used for an in vivo antidiarrheal assay. Isolated rat ileum was used as an ex vivo assay model to study the possible antispasmodic effect and its mechanism(s). RESULTS: The GC-MS analysis of O. majorana detected the presence of 21 compounds, of which alpha-terpineol was a major constituent. In the antidiarrheal experiment, O. majorana showed a substantial inhibitory effect on diarrheal episodes in mice at an oral dosage of 200 mg/kg, resulting in 40% protection. Furthermore, an oral dosage of 400 mg/kg provided even greater protection, with 80% effectiveness. Similarly, loperamide showed 100% protection at oral doses of 10 mg/kg. O. majorana caused complete inhibition of carbachol (CCh, 1 µM) and high K+ (80 mM)-evoked spasms in isolated ileal tissues by expressing significantly higher potency (p < 0.05) against high K+ compared to CCh, similar to verapamil, a Ca++ antagonist. The verapamil-like predominant Ca++ ion inhibitory action of O. majorana was further confirmed in the ileal tissues that were made Ca++-free by incubating the tissues in a physiological salt solution having ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The preincubation of O. majorana at increasing concentrations (0.3 and 1 mg/mL) shifted towards the right of the CaCl2-mediated concentration-response curves (CRCs) with suppression of the maximum contraction. Similarly, verapamil also caused non-specific suppression of Ca++ CRCs towards the right, as expected. CONCLUSIONS: Thus, this study conducted an analysis to determine the chemical constituents of the leaf extract of O. majorana and provided a detailed mechanistic basis for the medicinal use of O. majorana in hyperactive gut motility disorders.


Asunto(s)
Antidiarreicos , Origanum , Ratas , Ratones , Animales , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Antidiarreicos/química , Yeyuno , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Aceite de Ricino/farmacología , Aceite de Ricino/uso terapéutico , Diarrea/tratamiento farmacológico , Verapamilo/farmacología , Verapamilo/uso terapéutico , Canales de Calcio , Espasmo/tratamiento farmacológico
11.
J Orthop Surg Res ; 19(1): 147, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373964

RESUMEN

PURPOSE: Patients are typically diagnosed with both hypertension and fibrosarcoma. Medical oncologists must prescribe suitable anti-hypertensive medications while considering anti-tumor drugs. Recently, immunotherapy has become prominent in cancer treatment. Nonetheless, it is unknown what role anti-hypertensive medications will play in immunotherapy. METHODS: We examined the effects of six first-line anti-hypertensive medications on programmed cell death protein 1 antibody (PD1ab) in tumor treatment using a mouse model of subcutaneous fibrosarcoma. The drugs examined were verapamil, losartan, furosemide, spironolactone, captopril, and hydrochlorothiazide (HCTZ). The infiltration of CD8+ T cells was examined by immunohistochemistry. Additionally, several in vitro and in vivo assays were used to study the effects of HCTZ on human fibrosarcoma cancer cells to explore its mechanism. RESULTS: Verapamil suppressed tumor growth and showed an improved effect on the tumor inhibition of PD1ab. Captopril did not affect tumor growth but brought an unexpected benefit to PD1ab treatment. In contrast, spironolactone and furosemide showed no effect on tumor growth but had an offset effect on the PD1ab therapy. Consequently, the survival time of mice was also significantly reduced. Notably, losartan and HCTZ, especially HCTZ, promoted tumor growth and weakened the effect of PD1ab treatment. Consistent results were observed in vivo and in vitro using the human fibrosarcoma cell line HT1080. We determined that the Solute Carrier Family 12 Member 3 (SLC12A3), a known target of HCTZ, may be the principal factor underlying its effect-enhancing properties through mechanism studies employing The Cancer Genome Atlas (TCGA) data and in vivo and in vitro assays. CONCLUSION: Verapamil and captopril potentiated the anti-tumor effect of PD1ab, whereas spironolactone and furosemide weakened the effect of PD1ab on tumor inhibition. Alarmingly, losartan and HCTZ promoted tumor growth and impaired the effect of PD1ab. Furthermore, we preliminarily found that HCTZ may promote tumor progression through SLC12A3. Based on this study, futher mechanism researches and clinical trials should be conducted in the future.


Asunto(s)
Fibrosarcoma , Hipertensión , Humanos , Antihipertensivos/uso terapéutico , Losartán/farmacología , Losartán/uso terapéutico , Captopril/farmacología , Captopril/uso terapéutico , Espironolactona/uso terapéutico , Furosemida/uso terapéutico , Linfocitos T CD8-positivos , Hipertensión/tratamiento farmacológico , Hidroclorotiazida/uso terapéutico , Quimioterapia Combinada , Verapamilo/farmacología , Verapamilo/uso terapéutico , Fibrosarcoma/tratamiento farmacológico , Miembro 3 de la Familia de Transportadores de Soluto 12
12.
BMC Musculoskelet Disord ; 25(1): 123, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336651

RESUMEN

BACKGROUND: The purpose of this study was to investigate the effects of four different doses of verapamil on the mechanical behaviors of solid and the characteristics of fluid flow in cancellous bone of distal femur of type 2 diabetes rats under dynamic external load. METHODS: Based on the micro-CT images, the finite element models of cancellous bones and fluids at distal femurs of rats in control group, diabetes group, treatment groups VER 4, VER 12, VER 24, and VER 48 (verapamil doses of 4, 12, 24, and 48 mg/kg/day, respectively) were constructed. A sinusoidal time-varying displacement load with an amplitude of 0.8 µm and a period of 1s was applied to the upper surface of the solid region. Then, fluid-solid coupling numerical simulation method was used to analyze the magnitudes and distributions of von Mises stress, flow velocity, and fluid shear stress of cancellous bone models in each group. RESULTS: The results for mean values of von Mises stress, flow velocity and FSS (t = 0.25s) were as follows: their values in control group were lower than those in diabetes group; the three parameters varied with the dose of verapamil; in the four treatment groups, the values of VER 48 group were the lowest, they were the closest to control group, and they were smaller than diabetes group. Among the four treatment groups, VER 48 group had the highest proportion of the nodes with FSS = 1-3 Pa on the surface of cancellous bone, and more areas in VER 48 group were subjected to fluid shear stress of 1-3 Pa for more than half of the time. CONCLUSION: It could be seen that among the four treatment groups, osteoblasts on the cancellous bone surface in the highest dose group (VER 48 group) were more easily activated by mechanical loading, and the treatment effect was the best. This study might help in understanding the mechanism of verapamil's effect on the bone of type 2 diabetes mellitus, and provide theoretical guidance for the selection of verapamil dose in the clinical treatment of type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Hueso Esponjoso/diagnóstico por imagen , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Verapamilo/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Simulación por Computador , Estrés Mecánico , Análisis de Elementos Finitos
13.
Biopharm Drug Dispos ; 45(2): 71-82, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400763

RESUMEN

This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon. This was conducted both with and without perfusion of metformin or verapamil. The findings revealed that the vildagliptin absorptive clearance per unit length varied by site and was in the order as follows: ileum < jejunum < duodenum < ascending colon, implying that P-gp is significant in the reduction of vildagliptin absorption. Also, the arrangement cannot reverse intestinal P-gp, but the observations suggest that P-gp is significant in reducing vildagliptin absorption. Verapamil co-perfusion significantly increased the vildagliptin absorptive clearance by 2.4 and 3.2 fold through the jejunum and ileum, respectively. Metformin co-administration showed a non-significant decrease in vildagliptin absorptive clearance through all tested segments. Vildagliptin absorption was site-dependent and may be related to the intestinal P-glycoprotein content. This may aid in understanding the important elements that influence vildagliptin absorption, besides drug-drug interactions that can occur in type 2 diabetic patients taking vildagliptin in conjunction with other drugs that can modify the P-glycoprotein level.


Asunto(s)
Metformina , Animales , Humanos , Conejos , Vildagliptina/farmacología , Metformina/farmacología , Verapamilo/farmacología , Absorción Intestinal , Intestinos , Subfamilia B de Transportador de Casetes de Unión a ATP
14.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165038

RESUMEN

Myotonic dystrophy type 1 (DM1) involves misregulated alternative splicing for specific genes. We used exon or nucleotide deletion to mimic altered splicing of genes central to muscle excitation-contraction coupling in mice. Mice with forced skipping of exon 29 in the CaV1.1 calcium channel combined with loss of ClC-1 chloride channel function displayed markedly reduced lifespan, whereas other combinations of splicing mimics did not affect survival. The Ca2+/Cl- bi-channelopathy mice exhibited myotonia, weakness, and impairment of mobility and respiration. Chronic administration of the calcium channel blocker verapamil rescued survival and improved force generation, myotonia, and respiratory function. These results suggest that Ca2+/Cl- bi-channelopathy contributes to muscle impairment in DM1 and is potentially mitigated by common clinically available calcium channel blockers.


Asunto(s)
Canalopatías , Miotonía , Distrofia Miotónica , Ratones , Animales , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Calcio/metabolismo , Cloruros/metabolismo , Miotonía/metabolismo , Verapamilo/farmacología , Verapamilo/metabolismo , Canalopatías/genética , Canalopatías/metabolismo , Empalme Alternativo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Músculo Esquelético/metabolismo
15.
J Pharm Pharmacol ; 76(1): 57-63, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-37978932

RESUMEN

OBJECTIVES: To investigate the effect of blackseed oil (BSO) single dose on prednisolone pharmacokinetics via p-gp inhibition. METHODS: Three groups of rats (n = 5) were orally administered the vehicle, verapamil (50 mg/kg) or BSO (5 ml/kg) 15 min prior to prednisolone (5 mg/kg) administration. Blood samples were collected over 24 h and quantified. Non-compartmental analysis was employed to calculate maximum plasma concentration (Cmax), area under the curve (AUC0-last), time to reach Cmax (Tmax), apparent clearance (CL/F), and half-life (t1/2). Statistical significance was considered at p<0.05. RESULTS: Prednisolone Cmax and AUC0-last decreased by 65% and 25% in the BSO group compared to the negative control (P < .0001, .0029, respectively) while they increased by 1.75-folds and 8-folds in verapamil group (P < .0001). Tmax was achieved at 0.16, 0.5, and 0.25 h in the negative control, verapamil, and BSO-treated groups, respectively. CL/F in the treatment group was 1.3-fold and 10-fold higher compared to the negative and positive control, respectively, whereas the t1/2 remained comparable. CONCLUSION: Administration of BSO decreased prednisolone Cmax and AUC0-last in rats indicating that there is a herb-drug interaction; however, p-gp inhibition cannot be concluded. Patients relying on folk medicine in chronic illnesses treatment might need to avoid combining BSO with prednisolone.


Asunto(s)
Interacciones de Hierba-Droga , Prednisolona , Humanos , Ratas , Animales , Área Bajo la Curva , Verapamilo/farmacología , Aceites de Plantas/farmacología , Administración Oral
16.
Biomed Pharmacother ; 170: 116036, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134635

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disorder of the heart, but effective treatment options remain limited. Mavacamten, a direct myosin modulator, has been presented as novel pharmacological therapy for HCM. The aim of this study was to analyze the biomechanical response of HCM tissue to Mavacamten using living myocardial slices (LMS). LMS (n = 58) from patients with HCM (n = 10) were cultured under electromechanical stimulation, and Verapamil and Mavacamten were administered on consecutive days to evaluate their effects on cardiac biomechanics. Mavacamten and Verapamil reduced contractile force and dF/dt and increased time-to-relaxation in a similar manner. Yet, the time-to-peak of the cardiac contraction was prolonged after administration of Mavacamten (221.0 ms (208.8 - 236.3) vs. 237.7 (221.0 - 254.7), p = 0.004). In addition, Mavacamten prolonged the functional refractory period (FRP) (330 ms (304 - 351) vs. 355 ms (313 - 370), p = 0.023) and better preserved twitch force with increasing stimulation frequencies, compared to Verapamil. As such, Mavacamten reduced (hyper-)contractility and prolonged contraction duration of HCM LMS, suggesting a reduction in cardiac wall stress. Also, Mavacamten might protect against the development of ventricular tachyarrhythmias due to prolongation of the FRP, and improve toleration of tachycardia due to better preservation of twitch force at tachycardiac stimulation frequencies.


Asunto(s)
Cardiomiopatía Hipertrófica , Humanos , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Miosinas , Verapamilo/farmacología , Verapamilo/uso terapéutico , Contracción Miocárdica
17.
Immunobiology ; 229(1): 152767, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103391

RESUMEN

The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.


Asunto(s)
Apigenina , FN-kappa B , Sepsis , Ratones , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/farmacología , Verapamilo/farmacología , Peróxido de Hidrógeno/metabolismo , Simulación del Acoplamiento Molecular , Macrófagos/metabolismo , Glicoproteínas/metabolismo , Sepsis/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP/farmacología , Peso Corporal
18.
J Recept Signal Transduct Res ; 43(4): 93-101, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38070127

RESUMEN

PURPOSE: Current evidence suggests a high co-prevalence of hypertension and cervical cancer. Accordingly, blood pressure control is indicated during anti-tumor drug therapy in this patient population. Over the past few years, immunotherapy has made great strides in treating different cancers. However, the role and clinical significance of verapamil as a first-line anti-hypertensive drug during immunotherapy remain poorly understood, emphasizing the need for further studies. METHODS: Murine cervical cancer models were employed to assess the effect of verapamil monotherapy and combination with PD1ab. Immunohistochemistry was conducted to quantify the abundance of CD8+ T cell and Ki67+ cells. Several in-vitro and in-vivo assays were used to study the effects of verapamil and explore the preliminary mechanism. RESULTS: Monotherapy with verapamil or PD1ab immune checkpoint inhibitor significantly suppressed the growth of subcutaneously grafted U14 cells in WT BABL/c mice, respectively, with increased survival time of mice. Consistent results were observed in the melanoma model. Furthermore, we substantiated that verapamil significantly impaired tumor proliferation and migration of SiHa human cervical cancer cells in vitro and in vivo. In silico analysis using TCGA data revealed that NFAT2 expression negatively correlated with patient survival. The CCK8 assay revealed that verapamil abrogated the stimulatory effect of NFAT2 after knockdown of NFAT2. CONCLUSIONS: Our results suggest that verapamil inhibits tumor growth by modulating NFAT2 expression and enhancing tumor immune responses to PD1ab, which can be harnessed for cervical cancer therapy, especially for patients with comorbid hypertension. Indeed, further clinical trials are warranted to increase the robustness of our findings.


Asunto(s)
Antineoplásicos , Hipertensión , Neoplasias del Cuello Uterino , Femenino , Humanos , Animales , Ratones , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Verapamilo/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral
19.
Parasitol Res ; 123(1): 12, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057607

RESUMEN

Dicrocoelium dendriticum affects the livers of ruminants and causes several deleterious effects on animal health status. The aim of this study was to investigate the role of permeability-glycoprotein (P-gp) in absorption of praziquantel (PZQ) into D. dendriticum flukes by co-incubation with verapamil (VPL), an inhibitor of P-gp, under in vitro conditions. Mature flukes of D. dendriticum were collected from naturally infected sheep livers. The flukes were incubated with different concentrations of PZQ and VPL (50 and 100 µg/ml) in culture media and after several times of exposure (2, 6, 12, and 24 h), the concentration of PZQ absorbed in the parasites was measured by high-performance liquid chromatography. At 2-h post-incubation, the highest concentration of PZQ was noted as 0.92 µg/ml in the flukes treated with 100 µg/ml of each PZQ and VPL. After 24-h of exposure, VPL at all tested concentrations resulted in significant increase in absorption of PZQ into the parasite. Co-incubation of lancet flukes with VPL and PZQ roughly doubled the absorption of PZQ into them. Results of tegumental structures analysis by light microscopy confirmed higher efficacy of combination of VPL and PZQ. In conclusion, co-administration of VPL, especially at the concentration of 100 µg/ml, was able to increase PZQ uptake in Dicrocoelium flukes at all time points of the study.


Asunto(s)
Dicrocoelium , Parásitos , Ovinos , Animales , Praziquantel/farmacología , Verapamilo/farmacología , Permeabilidad
20.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833922

RESUMEN

As the population ages, a high prevalence of multimorbidity will affect the way physicians need to think about drug interactions. With microglia's important involvement in the pathology and progression of Alzheimer's disease (AD), understanding whether systemically administered drugs intended for other affections could impact microglia function, already impacted by the presence of beta-amyloid, is important. The aim of this study was to evaluate morphological changes of microglia, using in vivo 2-photon laser scanning microscopy, in a murine model of AD under systemic administration of sodium or calcium ion channel blockers in order to establish potential effects that these drugs might have on microglia under neuro-inflammatory conditions. A total of 30 mice (age 14-16 weeks, weight 20-25 g) were used, with 25 APP randomly divided into three groups. The remaining animals were CX3CR1GFP/GFP male mice (n = 5) used as WT controls. After baseline behavior testing, all animals received daily intraperitoneal injections for 30 days according to the assigned group [WT (n = 5), Control (n = 5), Carbamazepine (n = 10), and Verapamil (n = 10)]. The results showed that the Verapamil treatment improved short-term memory and enhanced exploratory behavior in APP mice. The Carbamazepine treatment also improved short-term memory but did not elicit significant changes in anxiety-related behavior. Both Verapamil and Carbamazepine reduced the surveillance speed of microglia processes and changed microglia morphology in the cortex compared to the Control group. Due to their complex molecular machinery, microglia are potentially affected by drugs that do not target them specifically, and, as such, investigating these interactions could prove beneficial in our management of neurodegenerative pathologies.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Masculino , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Microglía/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo , Carbamazepina/farmacología , Verapamilo/farmacología , Canales Iónicos , Precursor de Proteína beta-Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA