Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000302

RESUMEN

Dupuytren's disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM's content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease's severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease.


Asunto(s)
Colágeno , Decorina , Contractura de Dupuytren , Proteoglicanos , Humanos , Contractura de Dupuytren/metabolismo , Contractura de Dupuytren/patología , Colágeno/metabolismo , Proteoglicanos/metabolismo , Decorina/metabolismo , Matriz Extracelular/metabolismo , Masculino , Progresión de la Enfermedad , Femenino , Dermatán Sulfato/metabolismo , Persona de Mediana Edad , Anciano , Versicanos/metabolismo , Versicanos/genética , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Polisacáridos
2.
Pathol Res Pract ; 260: 155440, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964119

RESUMEN

A cancer mass is composed of a heterogeneous group of cells, a small part of which constitutes the cancer stem cells since they are less differentiated and have a high capacity to develop cancer. Versican is an extracellular matrix protein located in many human tissues. The mRNA of versican has been shown to have "splicing patterns" as detected by RT-PCR, northern blot analysis, and cDNA sequencing. Based on this knowledge this study aims to reveal the splice variants of versican molecules, which are thought to be involved in the pathogenesis of the DU-145 human prostatic carcinoma cell line and prostatic cancer stem cells isolated from this cell line. In this study, RWPE-1 normal prostatic and DU-145 human prostate cancer cell lines have been used. Prostatic cancer stem cells and the remaining group of non-prostatic-cancer stem cells (bulk population) were isolated according to their CD133+/CD44+. RNA was isolated in all groups, and sequence analysis was accomplished for splicing variants by Illumina NextSeq 500 sequencing system. The results were analyzed by bioinformatic evaluation. As five isoforms of the versican gene in the differential transcript expression are analyzed, it was observed that a significant change was only found in the isoforms Versican 0 and Versican 1. In this study, we explored the function of this molecule which we think to be effective in cancer progression, and suggested that more valuable results can be obtained after the accomplishment of in vivo experiments.


Asunto(s)
Antígeno AC133 , Receptores de Hialuranos , Células Madre Neoplásicas , Neoplasias de la Próstata , Versicanos , Humanos , Versicanos/genética , Versicanos/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Masculino , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Antígeno AC133/metabolismo , Antígeno AC133/genética , Línea Celular Tumoral , Empalme Alternativo , Isoformas de Proteínas
3.
Biochem Biophys Res Commun ; 727: 150309, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936224

RESUMEN

Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.


Asunto(s)
Tejido Adiposo , Metabolismo Energético , Homeostasis , Ratones Noqueados , Versicanos , Animales , Versicanos/metabolismo , Versicanos/genética , Ratones , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Obesidad/genética , Tejido Adiposo Blanco/metabolismo , Ratones Endogámicos C57BL , Masculino , Adipocitos/metabolismo
4.
Pancreatology ; 24(5): 719-731, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38719756

RESUMEN

BACKGROUND: Versican is a large extracellular matrix (ECM) proteoglycan with four isoforms V0-3. Elevated V0/V1 levels in breast cancer and glioma regulate cell migration and proliferation, but the role of versican in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: In this study, we evaluated the expression levels of versican isoforms, as well as their cellular source and interacting partners, in vivo, in human and mouse primary and metastatic PDAC tumours and in vitro, in pancreatic tumour cells and fibroblasts using immunostaining, confocal microscopy and qPCR techniques. We also investigated the effect of versican expression on fibroblast proliferation and migration using genetic and pharmacological approaches. RESULTS: We found that versican V0/V1 is highly expressed by cancer-associated fibroblasts (CAFs) in mouse and human primary and metastatic PDAC tumours. Our data also show that exposing fibroblasts to tumour-conditioned media upregulates V0 and V1 expressions, while Verbascoside (a CD44 inhibitor) downregulates V0/V1 expression. Importantly, V0/V1 knockdown significantly inhibits fibroblast proliferation. Mechanistically, we found that inhibiting hyaluronan synthesis does not affect versican co-localisation with CD44 in fibroblasts. CONCLUSION: CAFs express high levels of versican V0/V1 in primary and liver metastatic PDAC tumours and versican V0/V1 supports fibroblast proliferation.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Proliferación Celular , Neoplasias Pancreáticas , Isoformas de Proteínas , Versicanos , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Movimiento Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Versicanos/genética , Versicanos/metabolismo
5.
Matrix Biol ; 131: 1-16, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750698

RESUMEN

Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.


Asunto(s)
Proteína ADAMTS1 , Proteína ADAMTS5 , Glipicanos , Corazón , Proteolisis , Versicanos , Animales , Ratones , Versicanos/metabolismo , Versicanos/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS1/metabolismo , Proteína ADAMTS1/genética , Glipicanos/metabolismo , Glipicanos/genética , Corazón/crecimiento & desarrollo , Ratones Noqueados , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología
6.
BMC Pulm Med ; 24(1): 209, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685004

RESUMEN

BACKGROUND: The pathogenesis of adult non-cystic fibrosis (CF) bronchiectasis is complex, and the relevant molecular mechanism remains ambiguous. Versican (VCAN) is a key factor in inflammation through interactions with adhesion molecules. This study constructs a stable panoramic map of mRNA, reveals the possible pathogenesis of bronchiectasis, and provides new ideas and methods for bronchiectasis. METHODS: Peripheral blood and tissue gene expression data from patients with bronchiectasis and normal control were selected by bioinformatics analysis. The expression of VCAN in peripheral blood and bronchial tissues of bronchiectasis were obtained by transcriptome sequencing. The protein expression levels of VCAN in serums were verified by the enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of VCAN in co-culture of Pseudomonas aeruginosa and bronchial epithelial cells were verified by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the biological function of VCAN was detected by the transwell assay. RESULTS: The expression of VCAN was upregulated in the bronchiectasis group by sequencing analysis (P < 0.001). The expression of VCAN in the bronchial epithelial cell line BEAS-2B was increased in P. aeruginosa (P.a), which was co-cultured with BEAS-2B cells (P < 0.05). The concentration of VCAN protein in the serum of patients with bronchiectasis was higher than that in the normal control group (P < 0.05). Transwell experiments showed that exogenous VCAN protein induced the migration of neutrophils (P < 0.0001). CONCLUSIONS: Our findings indicate that VCAN may be involved in the development of bronchiectasis by increasing the migration of neutrophils and play an important role in bronchial pathogenesis.


Asunto(s)
Bronquiectasia , Versicanos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Versicanos/genética , Versicanos/metabolismo , Adulto , Pseudomonas aeruginosa/genética , Células Epiteliales/metabolismo , Anciano , Regulación hacia Arriba , Técnicas de Cocultivo , Bronquios/patología , Línea Celular , ARN Mensajero/metabolismo , Estudios de Casos y Controles , Relevancia Clínica
7.
Commun Biol ; 7(1): 301, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461223

RESUMEN

Hyalectan cleavage may play an important role in extracellular matrix remodeling. However, the proteolytic enzyme responsible for hyalectan degradation for fetal membrane rupture at parturition remains unknown. Here, we reveal that versican (VCAN) is the major hyalectan in the amnion, where its cleavage increases at parturition with spontaneous rupture of membrane. We further reveal that ADAMTS4 is a crucial proteolytic enzyme for VCAN cleavage in the amnion. Inflammatory factors may enhance VCAN cleavage by inducing ADAMTS4 expression and inhibiting ADAMTS4 endocytosis in amnion fibroblasts. In turn, versikine, the VCAN cleavage product, induces inflammatory factors in amnion fibroblasts, thereby forming a feedforward loop between inflammation and VCAN degradation. Mouse studies show that intra-amniotic injection of ADAMTS4 induces preterm birth along with increased VCAN degradation and proinflammatory factors abundance in the fetal membranes. Conclusively, there is enhanced VCAN cleavage by ADAMTS4 in the amnion at parturition, which can be reenforced by inflammation.


Asunto(s)
Proteína ADAMTS4 , Amnios , Versicanos , Femenino , Humanos , Recién Nacido , Embarazo , Proteína ADAMTS4/metabolismo , Amnios/metabolismo , Inflamación/metabolismo , Parto/metabolismo , Péptido Hidrolasas/metabolismo , Nacimiento Prematuro/metabolismo , Versicanos/metabolismo , Animales , Ratones
8.
EMBO Mol Med ; 16(1): 132-157, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177536

RESUMEN

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition associated with Marfan syndrome (MFS), a disease caused by fibrillin-1 gene mutations. While various conditions causing TAAD exhibit aortic accumulation of the proteoglycans versican (Vcan) and aggrecan (Acan), it is unclear whether these ECM proteins are involved in aortic disease. Here, we find that Vcan, but not Acan, accumulated in Fbn1C1041G/+ aortas, a mouse model of MFS. Vcan haploinsufficiency protected MFS mice against aortic dilation, and its silencing reverted aortic disease by reducing Nos2 protein expression. Our results suggest that Acan is not an essential contributor to MFS aortopathy. We further demonstrate that Vcan triggers Akt activation and that pharmacological Akt pathway inhibition rapidly regresses aortic dilation and Nos2 expression in MFS mice. Analysis of aortic tissue from MFS human patients revealed accumulation of VCAN and elevated pAKT-S473 staining. Together, these findings reveal that Vcan plays a causative role in MFS aortic disease in vivo by inducing Nos2 via Akt activation and identify Akt signaling pathway components as candidate therapeutic targets.


Asunto(s)
Aneurisma de la Aorta Torácica , Enfermedades de la Aorta , Disección Aórtica , Azidas , Desoxiglucosa , Síndrome de Marfan , Animales , Humanos , Ratones , Aneurisma de la Aorta Torácica/complicaciones , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Enfermedades de la Aorta/complicaciones , Desoxiglucosa/análogos & derivados , Síndrome de Marfan/complicaciones , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Versicanos/metabolismo
9.
J Clin Res Pediatr Endocrinol ; 16(2): 151-159, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38238969

RESUMEN

Objective: In animal models of obesity, adipocyte-derived versican, and macrophage-derived biglycan play a crucial role in mediating adipose tissue inflammation. The aim was to investigate levels of versican and biglycan in obese children and any potential association with body adipose tissue and hepatosteatosis. Methods: Serum levels of versican, biglycan, interleukin-6 (IL-6), and high sensitivity C-reactive protein (hsCRP) were measured by ELISA. Fat deposition in the liver, spleen, and subcutaneous adipose tissue was calculated using the IDEAL-IQ sequences in magnetic resonance images. Bioimpedance analysis was performed using the Tanita BC 418 MA device. Results: The study included 36 obese and 30 healthy children. The age of obese children was 13.6 (7.5-17.9) years, while the age of normal weight children was 13.0 (7.2-17.9) years (p=0.693). Serum levels of versican, hsCRP, and IL-6 were higher in the obese group (p=0.044, p=0.039, p=0.024, respectively), while no significant difference was found in biglycan levels between the groups. There was a positive correlation between versican, biglycan, hsCRP, and IL-6 (r=0.381 p=0.002, r=0.281 p=0.036, rho=0.426 p=0.001, r=0.424 p=0.001, rho=0.305 p=0.017, rho=0.748 p<0.001, respectively). Magnetic resonance imaging revealed higher segmental and global hepatic steatosis in obese children. There was no relationship between hepatic fat content and versican, biglycan, IL-6, and hsCRP. Versican, biglycan, hsCRP, and IL-6 were not predictive of hepatosteatosis. Body fat percentage >32% provided a predictive sensitivity of 81.8% and a specificity of 70.5% for hepatosteatosis [area under the curve (AUC): 0.819, p<0.001]. Similarly, a body mass index standard deviation score >1.75 yielded a predictive sensitivity of 81.8% and a specificity of 69.8% for predicting hepatosteatosis (AUC: 0.789, p<0.001). Conclusion: Obese children have higher levels of versican, hsCRP, and IL-6, and more fatty liver than their healthy peers.


Asunto(s)
Tejido Adiposo , Biglicano , Obesidad Infantil , Versicanos , Humanos , Versicanos/metabolismo , Versicanos/sangre , Niño , Masculino , Femenino , Biglicano/metabolismo , Biglicano/sangre , Adolescente , Tejido Adiposo/metabolismo , Obesidad Infantil/sangre , Obesidad Infantil/metabolismo , Macrófagos/metabolismo , Adipocitos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/sangre , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Interleucina-6/sangre , Estudios de Casos y Controles
10.
Fukushima J Med Sci ; 70(1): 1-9, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38267030

RESUMEN

Extracellular matrix (ECM) is a non-cellular constituent found in all tissues and organs. Although ECM was previously recognized as a mere "molecular glue" that supports the tissue structure of organs such as the lungs, it has recently been reported that ECM has important biological activities for tissue morphogenesis, inflammation, wound healing, and tumor progression. Proteoglycans are the main constituent of ECM, with growing evidence that proteoglycans and their associated glycosaminoglycans play important roles in the pathogenesis of several diseases. However, their roles in the lungs are incompletely understood. Leukocyte migration into the lung is one of the main aspects involved in the pathogenesis of several lung diseases. Glycosaminoglycans bind to chemokines and their interaction fine-tunes leukocyte migration into the affected organs. This review focuses on the role chemokine and glycosaminoglycan interactions in neutrophil migration into the lung. Furthermore, this review presents the role of proteoglycans such as syndecan, versican, and hyaluronan in inflammatory and fibrotic lung diseases.


Asunto(s)
Enfermedades Pulmonares , Pulmón , Humanos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/análisis , Glicosaminoglicanos/metabolismo , Versicanos/análisis , Versicanos/metabolismo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología
11.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37886839

RESUMEN

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Asunto(s)
Lesiones Cardíacas , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Humanos , Ratones , Animales Recién Nacidos , Proliferación Celular , Corazón , Lesiones Cardíacas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mamíferos , Miocitos Cardíacos/metabolismo , Regeneración , Versicanos/genética , Versicanos/metabolismo
12.
Sci Rep ; 13(1): 16419, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775676

RESUMEN

Major depressive disorder (MDD) and chronic unpredictable stress (CUS) in animals feature comparable cellular and molecular disturbances that involve neurons and glial cells in gray and white matter (WM) in prefrontal brain areas. These same areas demonstrate disturbed connectivity with other brain regions in MDD and stress-related disorders. Functional connectivity ultimately depends on signal propagation along WM myelinated axons, and thus on the integrity of nodes of Ranvier (NRs) and their environment. Various glia-derived proteoglycans interact with NR axonal proteins to sustain NR function. It is unclear whether NR length and the content of associated proteoglycans is altered in prefrontal cortex (PFC) WM of human subjects with MDD and in experimentally stressed animals. The length of WM NRs in histological sections from the PFC of 10 controls and 10 MDD subjects, and from the PFC of control and CUS rats was measured. In addition, in WM of the same brain region, five proteoglycans, tenascin-R and NR protein neurofascin were immunostained or their levels measured with western blots. Analysis of covariance and t-tests were used for group comparisons. There was dramatic reduction of NR length in PFC WM in both MDD and CUS rats. Proteoglycan BRAL1 immunostaining was reduced at NRs and in overall WM of MDD subjects, as was versican in overall WM. Phosphacan immunostaining and levels were increased in both in MDD and CUS. Neurofascin immunostaining at NRs and in overall WM was significantly increased in MDD. Reduced length of NRs and increased phosphacan and neurocan in MDD and stressed animals suggest that morphological and proteoglycan changes at NRs in depression may be related to stress exposure and contribute to connectivity alterations. However, differences between MDD and CUS for some NR related markers may point to other mechanisms affecting the structure and function of NRs in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Sustancia Blanca , Humanos , Ratas , Animales , Sustancia Blanca/patología , Nódulos de Ranvier/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Corteza Prefrontal/metabolismo , Versicanos/metabolismo
13.
J Transl Med ; 21(1): 475, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461061

RESUMEN

BACKGROUND: Bladder cancer is one of the most common malignant tumors of the urinary system and is associated with a poor prognosis once invasion and distant metastases occur. Epithelial-mesenchymal transition (EMT) drives metastasis and invasion in bladder cancer. Transforming growth factor ß1 (TGF-ß1) and stromal fibroblasts, especially cancer-associated fibroblasts (CAFs), are positive regulators of EMT in bladder cancer. However, it remains unclear how TGF-ß1 mediates crosstalk between bladder cancer cells and CAFs and how it induces stromal fibroblast-mediated EMT in bladder cancer. We aimed to investigate the mechanism of TGF-ß1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. METHODS: Primary CAFs with high expression of fibroblast activation protein (FAP) were isolated from bladder cancer tissue samples. Subsequently, different conditioned media were used to stimulate the bladder cancer cell line T24 in a co-culture system. Gene set enrichment analysis, a human cytokine antibody array, and cytological assays were performed to investigate the mechanism of TGF-ß1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. RESULTS: Among the TGF-ß family, TGF-ß1 was the most highly expressed factor in bladder cancer tissue and primary stromal fibroblast supernatant. In the tumor microenvironment, TGF-ß1 was mainly derived from stromal fibroblasts, especially CAFs. In stimulated bladder cells, stromal fibroblast-derived TGF-ß1 promoted bladder cancer cell migration, invasion, and EMT. Furthermore, TGF-ß1 promoted the activation of stromal fibroblasts, inducing CAF-like features, by upregulating FAP in primary normal fibroblasts and a normal fibroblast cell line. Stromal fibroblast-mediated EMT was induced in bladder cancer cells by TGF-ß1/FAP. Versican (VCAN), a downstream molecule of FAP, plays an essential role in TGF-ß1/FAP axis-induced EMT in bladder cancer cells. VCAN may also function through the PI3K/AKT1 signaling pathway. CONCLUSIONS: TGF-ß1 is a critical mediator of crosstalk between stromal fibroblasts and bladder cancer cells. We revealed a new mechanism whereby TGF-ß1 dominated stromal fibroblast-mediated EMT of bladder cancer cells via the FAP/VCAN axis and identified potential biomarkers (FAP, VCAN, N-cadherin, and Vimentin) of bladder cancer. These results enhance our understanding of bladder cancer invasion and metastasis and provide potential strategies for diagnosis, treatment, and prognosis.


Asunto(s)
Factor de Crecimiento Transformador beta1 , Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Versicanos/metabolismo
14.
Ann Diagn Pathol ; 66: 152176, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423116

RESUMEN

Phyllodes tumors (PTs) are biphasic fibroepithelial lesions that occur in the breast. Diagnosing and grading PTs remains a challenge in a small proportion of cases, due to the lack of reliable specific biomarkers. We screened a potential marker versican core protein (VCAN) through microproteomics analysis, validated its role for the grading of PTs by immunohistochemistry, and analyzed the correlation between VCAN expression and clinicopathological characteristics. Cytoplasmic immunoreactivity for VCAN was identified in all benign PT samples, among which 40 (93.0 %) showed VCAN-positive staining in ≥50 % of tumor cells. Eight (21.6 %) borderline PT samples showed VCAN-positive staining in ≥50 % of the cells with weak to moderate staining intensity, whereas 29 samples (78.4 %) showed VCAN-positive staining in <50 % of the cells. In malignant PTs, 16 (84.2 %) and three (15.8 %) samples showed VCAN-positive staining in <5 % and 5-25 % of stromal cells, respectively. Fibroadenomas showed a similar expression pattern to benign PTs. Fisher's exact test showed that the percentages of positive cells (P < .001) and staining intensities (P < .001) of tumor cells were significantly different between the five groups. VCAN positivity was associated with tumor categories (P < .0001) and CD34 expression (P < .0001). The expression of VCAN gradually decreases as the tumor categories increases, following recurrence. To the best of our knowledge, our results are the first in the literature to reveal that VCAN is useful for diagnosing and grading PTs. The expression level of VCAN appeared to be negatively associated with PT categories, suggesting that dysregulation of VCAN may be involved in the tumor progression of PTs.


Asunto(s)
Neoplasias de la Mama , Tumor Filoide , Humanos , Femenino , Tumor Filoide/patología , Versicanos/metabolismo , Células del Estroma/patología , Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo
15.
Redox Biol ; 64: 102794, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37402332

RESUMEN

Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Oxidantes/metabolismo , Ácido Peroxinitroso/metabolismo , Versicanos/genética , Versicanos/metabolismo , Ácido Hialurónico/metabolismo , Placa Aterosclerótica/metabolismo , Matriz Extracelular/metabolismo , Aterosclerosis/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inflamación/metabolismo
16.
Int Immunopharmacol ; 121: 110406, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37311354

RESUMEN

OBJECTIVE: Versican participates in various pathological processes like inflammation and fibrosis and is a potential therapeutic target for inflammatory diseases. Versican 1 (V1) has increased expression in inflammatory diseases, but its role is unclear. We explored the effects of V1 on acute lung inflammation to determine whether targeting V1 had therapeutic potential. METHODS: Human fetal lung fibroblast (HFL1) was transfected with or without V1-inhibiting lentivirus and treated with LPS. The expression levels of inflammatory cytokines, V1, cellular signaling pathway and Toll-like receptors (TLRs) were detected by qPCR, ELISA and western blot. The migration and adhesion of neutrophils and monocytes to HFL1s were performed. The activity of transcriptional factors was determined by dual-luciferase reporter assay. RESULTS: Inflammatory factors increased dramatically and continuously with V1 knockdown and LPS stimulation (P < 0.01), orchestrating migration of inflammatory cells and an enhanced inflammatory reaction. V1-knockdown increased TLR2 (P < 0.01) and activated the NF-κB pathway, which was partially reversed with a TLR2 neutralizing antibody and an NF-κB inhibitor. Explosion of LPS-induced inflammation was induced by knockdown of V1 via the SP1-TLR2-NF-κB axis. CONCLUSION: Increased expression of V1 might be protective in acute inflammation, and an infection-induced cytokine storm might be a severe complication of V1-targeted interventions.


Asunto(s)
FN-kappa B , Receptor Toll-Like 2 , Humanos , FN-kappa B/metabolismo , Receptor Toll-Like 2/metabolismo , Lipopolisacáridos/farmacología , Versicanos/metabolismo , Versicanos/farmacología , Regulación hacia Arriba , Transducción de Señal , Pulmón/metabolismo , Inflamación/tratamiento farmacológico
17.
J Oral Biosci ; 65(3): 233-242, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37277025

RESUMEN

OBJECTIVES: This study aimed to compare the extracellular matrix of primary cartilage with the secondary cartilage of chicks using immunohistochemical analyses in order to understand the features of chick secondary chondrogenesis. METHODS: Immunohistochemical analysis was performed on the extracellular matrix of quadrate (primary), squamosal, surangular, and anterior pterygoid secondary cartilages using various antibodies targeting the extracellular matrix of cartilage and bone. RESULTS: The localization of collagen types I, II, and X, versican, aggrecan, hyaluronan, link protein, and tenascin-C was identified in the quadrate cartilage, with variations within and between the regions. Newly formed squamosal and surangular secondary cartilages showed simultaneous immunoreactivity for all molecules investigated. However, collagen type X immunoreactivity was not observed, and there was weak immunoreactivity for versican and aggrecan in the anterior pterygoid secondary cartilage. CONCLUSIONS: The immunohistochemical localization of extracellular matrix in the quadrate (primary) cartilage was comparable to that of long bone (primary) cartilage in mammals. The fibrocartilaginous nature and rapid differentiation into hypertrophic chondrocytes, which are known structural features of secondary cartilage, were confirmed in the extracellular matrix of squamosal and surangular secondary cartilages. Furthermore, these tissues appear to undergo developmental processes similar to those in mammals. However, the anterior pterygoid secondary cartilage exhibited unique features that differed from primary and other secondary cartilages, suggesting it is formed through a distinct developmental process.


Asunto(s)
Cartílago , Versicanos , Animales , Agrecanos/análisis , Agrecanos/metabolismo , Versicanos/análisis , Versicanos/metabolismo , Cartílago/química , Cartílago/metabolismo , Cráneo/metabolismo , Mamíferos
18.
Appl Biochem Biotechnol ; 195(12): 7568-7582, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37032373

RESUMEN

Previous research indicated that the dysregulation of miRNA-30a-5p has a correlation with cell metastasis of lung adenocarcinoma (LUAD). But the study about the molecular regulatory mechanism of miRNA-30a-5p in LUAD cell metastasis is limited. Thus, we discussed the mechanism of miRNA-30a-5p and its biological function in LUAD cells. By utilizing bioinformatics analysis, how miRNA-30a-5p was expressed in LUAD tissue was determined and its downstream target genes were predicted. The signaling pathways where these target genes enriched were analyzed. Several in vitro experiments were applied for cell function detection: dual-luciferase assay for validating the targeting relationship between miRNA-30a-5p and its target gene; quantitative real-time polymerase chain reaction for testing the expression of miRNA-30a-5p and its target gene in LUAD cells; MTT, transwell, cell adhesion, flow cytometry and immunofluorescence assays for examining the capabilities of LUAD cells to proliferate, migrate, invade, adhere, apoptosis and epithelial-mesenchymal transition (EMT) effect; Western blot for determining the expression of adhesion-related proteins and EMT-related proteins. Down-regulated miRNA-30a-5p was discovered in LUAD cells, but on the contrary, VCAN was upregulated. MiRNA-30a-5p overexpression notably repressed the virulent progression of LUAD cells. Besides, dual-luciferase assay validated the targeting relationship between miRNA-30a-5p and VCAN. MiRNA-30a-5p, by negatively regulating VCAN, was capable of hindering LUAD cell proliferation, migration, invasion, adhesion, viability and EMT. It was illustrated that miRNA-30a-5p could downregulate VCAN to retard the malignant progression of LUAD cells, which provides novel insights into LUAD pathogenesis, suggesting that miRNA-30a-5p/VCAN axis can be a promising anti-cancer target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Proliferación Celular/genética , Luciferasas/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Versicanos/genética , Versicanos/metabolismo
19.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982775

RESUMEN

Androgenic alopecia (AGA) is the most common type of hair loss, where local high concentrations of dihydrotestosterone (DHT) in the scalp cause progressive shrinkage of the hair follicles, eventually contributing to hair loss. Due to the limitations of existing methods to treat AGA, the use of multi-origin mesenchymal stromal cell-derived exosomes has been proposed. However, the functions and mechanisms of action of exosomes secreted by adipose mesenchymal stromal cells (ADSCs-Exos) in AGA are still unclear. Using Cell Counting Kit-8 (CCK8) analysis, immunofluorescence staining, scratch assays, and Western blotting, it was found that ADSC-Exos contributed to the proliferation, migration, and differentiation of dermal papilla cells (DPCs) and up-regulated the expression of cyclin, ß-catenin, versican, and BMP2. ADSC-Exos also mitigated the inhibitory effects of DHT on DPCs and down-regulated transforming growth factor-beta1 (TGF-ß1) and its downstream genes. Moreover, high-throughput miRNA sequencing and bioinformatics analysis identified 225 genes that were co-expressed in ADSC-Exos; of these, miR-122-5p was highly enriched and was found by luciferase assays to target SMAD3. ADSC-Exos carrying miR-122-5p antagonized DHT inhibition of hair follicles, up-regulated the expression of ß-catenin and versican in vivo and in vitro, restored hair bulb size and dermal thickness, and promoted the normal growth of hair follicles. So, ADSC-Exos enhanced the regeneration of hair follicles in AGA through the action of miR-122-5p and the inhibition of the TGF-ß/SMAD3 axis. These results suggest a novel treatment option for the treatment of AGA.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Humanos , Folículo Piloso/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Dihidrotestosterona/farmacología , Dihidrotestosterona/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Exosomas/metabolismo , Versicanos/genética , Versicanos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal , MicroARNs/genética , MicroARNs/metabolismo , Alopecia/metabolismo , Proteína smad3/metabolismo
20.
J Biol Chem ; 299(4): 103048, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813235

RESUMEN

A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1) is a protease involved in fertilization, cancer, cardiovascular development, and thoracic aneurysms. Proteoglycans such as versican and aggrecan have been identified as ADAMTS1 substrates, and Adamts1 ablation in mice typically results in versican accumulation; however, previous qualitative studies have suggested that ADAMTS1 proteoglycanase activity is weaker than that of other family members such as ADAMTS4 and ADAMTS5. Here, we investigated the functional determinants of ADAMTS1 proteoglycanase activity. We found that ADAMTS1 versicanase activity is approximately 1000-fold lower than ADAMTS5 and 50-fold lower than ADAMTS4 with a kinetic constant (kcat/Km) of 3.6 × 103 M-1 s-1 against full-length versican. Studies on domain-deletion variants identified the spacer and cysteine-rich domains as major determinants of ADAMTS1 versicanase activity. Additionally, we confirmed that these C-terminal domains are involved in the proteolysis of aggrecan as well as biglycan, a small leucine-rich proteoglycan. Glutamine scanning mutagenesis of exposed positively charged residues on the spacer domain loops and loop substitution with ADAMTS4 identified clusters of substrate-binding residues (exosites) in ß3-ß4 (R756Q/R759Q/R762Q), ß9-ß10 (residues 828-835), and ß6-ß7 (K795Q) loops. This study provides a mechanistic foundation for understanding the interactions between ADAMTS1 and its proteoglycan substrates and paves the way for development of selective exosite modulators of ADAMTS1 proteoglycanase activity.


Asunto(s)
Proteína ADAMTS1 , Animales , Ratones , Proteína ADAMTS1/química , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Agrecanos/metabolismo , Versicanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA