Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.127
Filtrar
1.
Biomolecules ; 14(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38785998

RESUMEN

Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing protein 1 (ARRDC1) and CD63 on the generation of sEVs, p53 loading efficiency, and therapeutic efficacy. Overexpression of either ARRDC1-p53 (ARP) or CD63-p53 (CDP) significantly elevated p53 mRNA and protein levels. The incorporation of ARRDC1 and CD63 significantly enhanced HEK293T-sEV biogenesis, evidenced by significant increases in sEV-associated proteins TSG101 and LAMP1, resulting in a boost in sEV production. Importantly, fusion with ARRDC1 or CD63 substantially increased the efficiency of loading both p53 fusion proteins and its mRNA into sEVs. sEVs equipped with ARP or CDP significantly enhanced the enrichment of p53 fusion proteins and mRNA in p53-null H1299 cells, resulting in a marked increase in apoptosis and a reduction in cell proliferation, with ARP-sEVs demonstrating greater effectiveness than CDP-sEVs. These findings underscore the enhanced functionality of ARRDC1- and CD63-modified sEVs, emphasizing the potential of genetic modifications in sEV-based therapies for targeted cancer treatment.


Asunto(s)
Apoptosis , Vesículas Extracelulares , Tetraspanina 30 , Proteína p53 Supresora de Tumor , Humanos , Tetraspanina 30/metabolismo , Tetraspanina 30/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Células HEK293 , Línea Celular Tumoral , Proliferación Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteína 1 de la Membrana Asociada a los Lisosomas
2.
FASEB J ; 38(10): e23672, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38775929

RESUMEN

Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to predict in advance. Evidence indicates that the copy number of mitochondrial DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released into circulation may act as a mediator of inflammation, a recognized factor in the development of CVD, in the long distance. This pilot study aims to test if levels of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) are altered in CVD patients and if they can predict heart attack in advance. A group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) was selected from the LifeLines Biobank according to the incidence of new cardiovascular event monitored in 6 years (50 among controls had heart attack after the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA from plasma as well as in buffy coat. EVs have been characterized by their size, polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and healthy subjects. EVs carried higher mtDNAcn in subject with a previous history of CVD than controls, also adjusting the analysis for the EVs derived count rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for further investigations to determine its pathophysiological role in inflammation.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Nucleicos Libres de Células , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Vesículas Extracelulares , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/sangre , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Masculino , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Femenino , Proyectos Piloto , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/sangre , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Estudios Prospectivos
3.
Sci Rep ; 14(1): 10925, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740826

RESUMEN

Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.


Asunto(s)
Vesículas Extracelulares , Enfermedades Inflamatorias del Intestino , MicroARNs , Ultrasonografía , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Masculino , Femenino , Adulto , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/diagnóstico por imagen , Enfermedades Inflamatorias del Intestino/patología , Persona de Mediana Edad , Ultrasonografía/métodos , Estudios Prospectivos , Biomarcadores/metabolismo
4.
Biol Direct ; 19(1): 38, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741178

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising. METHODS: RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area under the curve and odds ratios were used to evaluate the diagnostic potential of the models. RESULTS: An initial cluster analysis of RNA-seq expression data showed separation by the subjects' gender, but not by tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 and SNORA50C (p = 0.0091). CONCLUSIONS: Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, advancing the search for a robust, easy-to-use ccRCC screening method.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Vesículas Extracelulares , Neoplasias Renales , ARN Nucleolar Pequeño , Humanos , Carcinoma de Células Renales/orina , Carcinoma de Células Renales/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/genética , Femenino , Masculino , Persona de Mediana Edad , Neoplasias Renales/orina , Neoplasias Renales/genética , Anciano , ARN Nucleolar Pequeño/genética , Estudios de Cohortes , Adulto
5.
Biochem Biophys Res Commun ; 715: 149937, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38701688

RESUMEN

Localization of RNAs at specific subcellular locations regulating various local cellular events has gained much attention recently. Like most other classes of RNAs, the function of newly discovered circular RNAs (circRNAs) is predominantly determined by their association with different cellular factors in the cell. CircRNAs function as transcriptional and posttranscriptional regulators of gene expression by interacting with transcription factors, splicing regulators, RNA-binding proteins, and microRNAs or by translating into functional polypeptides. Hence, studying their subcellular localization to assess their function is essential. The discovery of more than a million circRNA and increasing evidence of their involvement in development and diseases require a thorough analysis of their subcellular localization linking to their biological functions. Here, we summarize current knowledge of circRNA localization in cells and extracellular vesicles, factors regulating their subcellular localization, and the implications of circRNA localization on their cellular functions. Given the discovery of many circRNAs in all life forms and their implications in pathophysiology, we discuss the challenges in studying circRNA localization and the opportunities for unlocking the mystery of circRNA functions.


Asunto(s)
ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Animales , ARN/metabolismo , ARN/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Regulación de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , MicroARNs/genética , MicroARNs/metabolismo
6.
Bull Exp Biol Med ; 176(5): 658-665, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38727955

RESUMEN

We studied the influence of extracellular vesicles from the follicular fluid of a young donor on gene expression (MKI67, MYBL2, CCNB1, CCND1, CCNE1, CALM2, BAX, NDRG1, TP53I3, VEGF, VCAN, HAS2, CTSL2, PIBF1, RPL37, PFKP, GPX3, and AQP3) in embryos of women of different ages. According to nanoparticle tracking analysis data, the concentration of extracellular vesicles was 3.75±0.47×1011 particles/ml and the mean particle size was 138.78±9.90 nm. During co-culturing of the follicular fluid extracellular vesicles with blastocysts of young women, we observed significantly increased expression of mRNA for genes CTSL2, CCND1, CCNE1, VEGF and reduced expression of BAX gene mRNA in comparison with embryos in women of late reproductive age. We hypothesized that addition of extracellular vesicles of the oocyte follicular fluid from a young donor to the culture medium of embryos could slow down apoptosis process typical of blastocyst cells in women above 36 years.


Asunto(s)
Apoptosis , Blastocisto , Vesículas Extracelulares , Líquido Folicular , Humanos , Femenino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Apoptosis/genética , Adulto , Líquido Folicular/metabolismo , Blastocisto/metabolismo , Blastocisto/citología , Regulación del Desarrollo de la Expresión Génica , Proliferación Celular , Oocitos/metabolismo , Factores de Edad , Desarrollo Embrionario/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Sci Rep ; 14(1): 11217, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755208

RESUMEN

Our preliminary investigation has identified the potential of serum fucosylated extracellular vesicles (EVs) miR-4732-5p in the early diagnosis of lung adenocarcinoma (LUAD) by a fucose-captured strategy utilizing lentil lectin (LCA)-magnetic beads and subsequent screening of high throughput sequencing and validation of real-time quantitative polymerase chain reaction (RT-qPCR). Considering the relatively complicated procedure, expensive equipment, and stringent laboratory condition, we have constructed an electrochemical biosensor assay for the detection of miR-4732-5p. miR-4732-5p is extremely low in serum, down to the fM level, so it needs to be detected by highly sensitive electrochemical methods based on the Mg2+-dependent DNAzyme splitting nucleic acid lock (NAL) cycle and hybridization chain reaction (HCR) signal amplification. In this study, signal amplification is achieved through the dual amplification reactions using NAL cycle in combination with HCR. In addition, hybridized DNA strands bind to a large number of methylene blue (MB) molecules to enhance signaling. Based on the above strategy, we further enhance our signal amplification strategies to improve detection sensitivity and accuracy. The implementation of this assay proceeded as follows: initially, miR-4732-5p was combined with NAL, and then Mg2+-dependent DNAzyme splitted NAL to release auxiliary DNA (S1) strands, which were subsequently captured by the immobilized capture probe DNA (C1) strands on the electrode surface. Following this, abundant quantities of DNA1 (H1) and DNA2 (H2) tandems were generated by HCR, and S1 strands then hybridized with the H1 and H2 tandems through base complementary pairing. Finally, MB was bonded to the H1 and H2 tandems through π-π stacking interaction, leading to the generation of a signal current upon the detection of a potential capable of inducing a redox change of MB by the electrode. Furthermore, we evaluated the performance of our developed electrochemical biosensor assay. The results demonstrated that our assay is a reliable approach, characterized by its high sensitivity (with a detection limit of 2.6 × 10-17 M), excellent specificity, good accuracy, reproducibility, and stability. Additionally, it is cost-effective, requires simple operation, and is portable, making it suitable for the detection of serum fucosylated extracellular vesicles miR-4732-5p. Ultimately, this development has the potential to enhance the diagnostic efficiency for patients with early-stage LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Técnicas Biosensibles , Técnicas Electroquímicas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/sangre , Técnicas Biosensibles/métodos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/sangre , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Técnicas Electroquímicas/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Detección Precoz del Cáncer/métodos , Femenino , Masculino , Persona de Mediana Edad
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732095

RESUMEN

Phthalates are chemical compounds, mainly used as additives in plastics, which are known to induce harmful impacts to the environment and human health due to their ability to act as hormone-mimics. Few studies have been reported on the relationship between human exposure to phthalates and the level of circulating microRNAs (miRs), especially those miRs encapsulated in extracellular vesicles/exosomes or exosome-like vesicles (ELVs). We examined the relationship of ELV-miR expression patterns and urine of adult men with five phthalate metabolites (i.e., mono isobutyl phthalate, mono-n-butyl phthalate, mono benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethylhexyl) phthalate) to identify potential biomarkers and relevant pathways. We found significant positive associations which were further confirmed by multivariable analysis. Overall, our analyses showed that the Σ phthalate metabolite concentration was associated with a significant increase in the expression level of two miRs found in ELV: miR-202 and miR-543. Different pathways including cancer and immune-related responses were predicted to be involved in this relationship. Analyzing the specific downstream target genes of miR-202 and miR-543, we identified the phosphatase and tensin homolog (PTEN) as the key gene in several converging pathways. In summary, the obtained results demonstrate that exposure to environmental phthalates could be related to altered expression profiles of specific ELV-miRs in adult men, thereby demonstrating the potential of miRs carried by exosomes to act as early effect biomarkers.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Ácidos Ftálicos , Ácidos Ftálicos/orina , Ácidos Ftálicos/toxicidad , Humanos , Masculino , MicroARNs/genética , MicroARNs/orina , Exosomas/genética , Exosomas/metabolismo , Adulto , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biomarcadores/orina , Exposición a Riesgos Ambientales/efectos adversos , Persona de Mediana Edad , Contaminantes Ambientales/orina , Contaminantes Ambientales/toxicidad
9.
J Nanobiotechnology ; 22(1): 222, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698420

RESUMEN

BACKGROUND: Aging is a very complex physiological phenomenon, and sEVs are involved in the regulation of this mechanism. Serum samples from healthy individuals under 30 and over 60 years of age were collected to analyze differences in sEVs proteomics. RESULTS: Based on PBA analysis, we found that sEVs from the serum of elderly individuals highly express TACSTD2 and identified a subpopulation marked by TACSTD2. Using ELISA, we verified the upregulation of TACSTD2 in serum from elderly human and aged mouse. In addition, we discovered that TACSTD2 was significantly increased in samples from tumor patients and had better diagnostic value than CEA. Specifically, 9 of the 13 tumor groups exhibited elevated TACSTD2, particularly for cervical cancer, colon cancer, esophageal carcinoma, liver cancer and thyroid carcinoma. Moreover, we found that serum sEVs from the elderly (especially those with high TACSTD2 levels) promoted tumor cell (SW480, HuCCT1 and HeLa) proliferation and migration. CONCLUSION: TACSTD2 was upregulated in the serum of elderly individuals and patients with tumors, and could serve as a dual biomarker for aging and tumors.


Asunto(s)
Antígenos de Neoplasias , Biomarcadores de Tumor , Moléculas de Adhesión Celular , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/sangre , Antígenos de Neoplasias/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Animales , Ratones , Femenino , Anciano , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/genética , Neoplasias/metabolismo , Masculino , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Adulto , Proliferación Celular , Movimiento Celular , Envejecimiento/genética , Proteómica/métodos , Células HeLa , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Regulación hacia Arriba
10.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791247

RESUMEN

Over the last decades, the survival of multiple myeloma (MM) patients has considerably improved. However, despite the availability of new treatments, most patients still relapse and become therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM patients' outcome, while typically evolving over time. Because of the patchy bone marrow (BM) infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation without the discomfort of repeated BM aspirations. In this review, we compare the application potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.


Asunto(s)
Mieloma Múltiple , Mutación , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/diagnóstico , Humanos , Biopsia Líquida/métodos , ADN Tumoral Circulante/genética , Ácidos Nucleicos Libres de Células/genética , Biomarcadores de Tumor/genética , Análisis Mutacional de ADN/métodos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
11.
Sci Rep ; 14(1): 11398, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762534

RESUMEN

Glioblastoma (GB) is a devastating tumor of the central nervous system characterized by a poor prognosis. One of the best-established predictive biomarker in IDH-wildtype GB is O6-methylguanine-DNA methyltransferase (MGMT) methylation (mMGMT), which is associated with improved treatment response and survival. However, current efforts to monitor GB patients through mMGMT detection have proven unsuccessful. Small extracellular vesicles (sEVs) hold potential as a key element that could revolutionize clinical practice by offering new possibilities for liquid biopsy. This study aimed to determine the utility of sEV-based liquid biopsy as a predictive biomarker and disease monitoring tool in patients with IDH-wildtype GB. Our findings show consistent results with tissue-based analysis, achieving a remarkable sensitivity of 85.7% for detecting mMGMT in liquid biopsy, the highest reported to date. Moreover, we suggested that liquid biopsy assessment of sEV-DNA could be a powerful tool for monitoring disease progression in IDH-wildtype GB patients. This study highlights the critical significance of overcoming molecular underdetection, which can lead to missed treatment opportunities and misdiagnoses, possibly resulting in ineffective therapies. The outcomes of our research significantly contribute to the field of sEV-DNA-based liquid biopsy, providing valuable insights into tumor tissue heterogeneity and establishing it as a promising tool for detecting GB biomarkers. These results have substantial implications for advancing predictive and therapeutic approaches in the context of GB and warrant further exploration and validation in clinical settings.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Vesículas Extracelulares , Glioblastoma , Proteínas Supresoras de Tumor , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/diagnóstico , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biopsia Líquida/métodos , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico , Anciano , Adulto , Pronóstico
12.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802814

RESUMEN

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Macrófagos , Fagocitosis , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Macrófagos/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Cisplatino/farmacología , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/genética , Eferocitosis
13.
Free Radic Biol Med ; 219: 76-87, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604315

RESUMEN

Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.


Asunto(s)
Proteínas Cullin , Retinopatía Diabética , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Proteína NEDD8 , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Retinopatía Diabética/patología , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Transducción de Señal , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Productos Finales de Glicación Avanzada/metabolismo , Ratones Endogámicos C57BL
14.
J Mol Cell Cardiol ; 190: 48-61, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582260

RESUMEN

We have demonstrated that directly reprogramming cardiac fibroblasts into new cardiomyocytes via miR combo improves cardiac function in the infarcted heart. However, major challenges exist with delivery and efficacy. During a screening based approach to improve delivery, we discovered that C166-derived EVs were effective delivery agents for miR combo both in vitro and in vivo. In the latter, EV mediated delivery of miR combo induced significant conversion of cardiac fibroblasts into cardiomyocytes (∼20%), reduced fibrosis and improved cardiac function in a myocardial infarction injury model. When compared to lipid-based transfection, C166 EV mediated delivery of miR combo enhanced reprogramming efficacy. Improved reprogramming efficacy was found to result from a miRNA within the exosome: miR-148a-3p. The target of miR-148a-3p was identified as Mdfic. Over-expression and targeted knockdown studies demonstrated that Mdfic was a repressor of cardiomyocyte specific gene expression. In conclusion, we have demonstrated that C166-derived EVs are an effective method for delivering reprogramming factors to cardiac fibroblasts and we have identified a novel miRNA contained within C166-derived EVs which enhances reprogramming efficacy.


Asunto(s)
Reprogramación Celular , Fibroblastos , MicroARNs , Miocitos Cardíacos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Reprogramación Celular/genética , Miocitos Cardíacos/metabolismo , Fibroblastos/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Exosomas/metabolismo , Regulación de la Expresión Génica , Humanos
15.
Genes (Basel) ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674369

RESUMEN

Tuberculosis (TB) remains a significant global health concern, necessitating accurate diagnosis and treatment monitoring. Extracellular vesicles (EVs), including exosomes, play crucial roles in disease progression, with their associated genes serving as potential biomarkers and therapeutic targets. Leveraging publicly available RNA-Seq datasets of TB patients and healthy controls (HCs), to identify differentially expressed genes (DEGs) and their associated protein-protein interaction networks and immune cell profiles, the common EV-related DEGs were identified and validated in the GSE42830 and GSE40553 datasets. We have identified nine common EV-related DEGs (SERPINA1, TNFAIP6, MAPK14, STAT1, ITGA2B, VAMP5, CTSL, CEACAM1, and PLAUR) upregulated in TB patients. Immune cell infiltration analysis revealed significant differences between TB patients and HCs, highlighting increased proportions of various immune cells in TB patients. These DEGs are involved in crucial cellular processes and pathways related to exocytosis and immune response regulation. Notably, VAMP5 exhibited excellent diagnostic performance (AUC-0.993, sensitivity-93.8%, specificity-100%), with potential as a novel biomarker for TB. The EV-related genes can serve as novel potential biomarkers that can distinguish between TB and HCs. VAMP5, which functions in exosome biogenesis and showed significant upregulation in TB, can be targeted for therapeutic interventions and treatment outcomes.


Asunto(s)
Vesículas Extracelulares , Tuberculosis , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/microbiología , Biomarcadores , Mapas de Interacción de Proteínas/genética , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Perfilación de la Expresión Génica , Exosomas/genética , Exosomas/metabolismo
16.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673963

RESUMEN

Accurate etiologic diagnosis provides an appropriate secondary prevention and better prognosis in ischemic stroke (IS) patients; still, 45% of IS are cryptogenic, urging us to enhance diagnostic precision. We have studied the transcriptomic content of plasma extracellular vesicles (EVs) (n = 21) to identify potential biomarkers of IS etiologies. The proteins encoded by the selected genes were measured in the sera of IS patients (n = 114) and in hypertensive patients with (n = 78) and without atrial fibrillation (AF) (n = 20). IGFBP-2, the most promising candidate, was studied using immunohistochemistry in the IS thrombi (n = 23) and atrium of AF patients (n = 13). In vitro, the IGFBP-2 blockade was analyzed using thromboelastometry and endothelial cell cultures. We identified 745 differentially expressed genes among EVs of cardioembolic, atherothrombotic, and ESUS groups. From these, IGFBP-2 (cutoff > 247.6 ng/mL) emerged as a potential circulating biomarker of embolic IS [OR = 8.70 (1.84-41.13) p = 0.003], which was increased in patients with AF vs. controls (p < 0.001) and was augmented in cardioembolic vs. atherothrombotic thrombi (p < 0.01). Ex vivo, the blockage of IGFBP-2 reduced clot firmness (p < 0.01) and lysis time (p < 0.001) and in vitro, diminished endothelial permeability (p < 0.05) and transmigration (p = 0.06). IGFBP-2 could be a biomarker of embolic IS and a new therapeutic target involved in clot formation and endothelial dysfunction.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Accidente Cerebrovascular Isquémico , Trombosis , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biomarcadores/sangre , Masculino , Femenino , Anciano , Trombosis/metabolismo , Trombosis/etiología , Trombosis/sangre , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Persona de Mediana Edad , Perfilación de la Expresión Génica , Transcriptoma , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/complicaciones , Fibrilación Atrial/sangre
17.
JPEN J Parenter Enteral Nutr ; 48(4): 479-485, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38566550

RESUMEN

BACKGROUND: Extracellular vesicles in human milk are critical in supporting newborn growth and development. Bioavailability of dietary extracellular vesicles may depend on the composition of membrane lipids. Single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase gene cluster impact the content of long-chain polyunsaturated fatty acids in human milk phospholipids. This study investigated the relation between variation in FADS1 and FADS2 with the content of polyunsaturated fatty acids in extracellular vesicles from human milk. METHODS: Milk was obtained from a cohort of mothers (N = 70) at 2-4 weeks of lactation. SNPs in the FADS gene locus were determined using pyrosequencing for rs174546 in FADS1 and rs174575 in FADS2. Quantitative lipidomic analysis of polyunsaturated fatty acids in human milk and extracellular vesicles from human milk was completed by gas chromatography-mass spectrometry. RESULTS: The rs174546 and rs174575 genotypes were independent predictors of the arachidonic acid content in extracellular vesicles. The rs174546 genotype also predicted eicosapentaenoic acid and docosahexaenoic acid in extracellular vesicles. The reduced content of long-chain polyunsaturated fatty acids in extracellular vesicles in human milk may be due to lower fatty acid desaturase activity in mothers who are carriers of the A allele in rs174546 or the G allele in rs174575. CONCLUSION: The polyunsaturated fatty acid composition of milk extracellular vesicles is predicted by the FADS genotype. These findings yield novel insights regarding extracellular vesicle content and composition that can inform the design of future research to explore how lipid metabolites impact the bioavailability of human milk extracellular vesicles.


Asunto(s)
delta-5 Desaturasa de Ácido Graso , Vesículas Extracelulares , Ácido Graso Desaturasas , Ácidos Grasos Insaturados , Genotipo , Leche Humana , Polimorfismo de Nucleótido Simple , Humanos , Leche Humana/química , Leche Humana/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Femenino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/metabolismo , Adulto , Estudios de Asociación Genética , Estudios de Cohortes , Lactancia/genética , Lactancia/metabolismo , Ácidos Docosahexaenoicos/análisis , Ácidos Docosahexaenoicos/metabolismo
18.
Viruses ; 16(4)2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38675867

RESUMEN

Extracellular vesicles (EVs) such as exosomes have been shown to play physiological roles in cell-to-cell communication by delivering various proteins and nucleic acids. In addition, several studies revealed that the EVs derived from the cells that are infected with certain viruses could transfer the full-length viral genomes, resulting in EVs-mediated virus propagation. However, the possibility cannot be excluded that the prepared EVs were contaminated with infectious viral particles. In this study, the cells that harbor subgenomic replicon derived from the Japanese encephalitis virus and dengue virus without producing any replication-competent viruses were employed as the EV donor. It was demonstrated that the EVs in the culture supernatants of those cells were able to transfer the replicon genome to other cells of various types. It was also shown that the EVs were incorporated by the recipient cells primarily through macropinocytosis after interaction with CD33 and Tim-1/Tim-4 on HeLa and K562 cells, respectively. Since the methods used in this study are free from contamination with infectious viral particles, it is unequivocally indicated that the flavivirus genome can be transferred by EVs from cell to cell, suggesting that this pathway, in addition to the classical receptor-mediated infection, may play some roles in the viral propagation and pathogenesis.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Vesículas Extracelulares , Genoma Viral , Replicón , Proteínas Virales , Vesículas Extracelulares/virología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Replicón/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral , Flavivirus/genética , Flavivirus/fisiología , Virus del Dengue/genética , Virus del Dengue/fisiología , Células HeLa , Células K562 , Animales , Línea Celular , ARN Subgenómico
19.
Urol Oncol ; 42(7): 179-190, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594151

RESUMEN

Bladder cancer (BCa) stands as prevalent malignancy of the urinary system globally, especially among men. The clinical classification of BCa into non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for prognosis and treatment decisions. However, challenges persist in current diagnostic methods like Urine cytopathology that shows poor sensitivity therefore compromising on accurately diagnosing and monitoring BCa. In recent years, research has emphasized the importance of identifying urine and blood-based specific biomarkers for BCa that can enable early and precise diagnosis, effective tumor classification, and monitoring. The convenient proximity of urine with the urinary bladder epithelium makes urine a good source of noninvasive biomarkers, in particular urinary EVs because of the packaged existence of tumor-associated molecules. Therefore, the review assesses the potential of urinary extracellular vesicles (uEVs) as noninvasive biomarkers for BCa. We have elaborately reviewed and discussed the research that delves into the role of urinary EVs in the context of BCa diagnosis and classification. Extensive research has been dedicated to investigating differential microRNA (miRNA) expressions, with the goal of establishing distinct, noninvasive biomarkers for BCa. The identification of such biomarkers has the potential to revolutionize early detection, risk stratification, therapeutic interventions, and ultimately, the long-term prognosis of BCa patients. Despite notable advancements, inconsistencies persist in the biomarkers identified, methodologies employed, and study populations. This review meticulously compiles reported miRNA biomarkers, critically assessing the variability and discrepancies observed in existing research. By synthesizing these findings, the article aims to direct future studies toward a more cohesive and dependable approach in BCa biomarker identification, fostering progress in patient care and management.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/orina , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/orina , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/genética
20.
Transl Psychiatry ; 14(1): 199, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678012

RESUMEN

Major depressive disorder (MDD) is associated with interoceptive processing dysfunctions, but the molecular mechanisms underlying this dysfunction are poorly understood. This study combined brain neuronal-enriched extracellular vesicle (NEEV) technology and serum markers of inflammation and metabolism with Functional Magnetic Resonance Imaging (fMRI) to identify the contribution of gene regulatory pathways, in particular micro-RNA (miR) 93, to interoceptive dysfunction in MDD. Individuals with MDD (n = 41) and healthy comparisons (HC; n = 35) provided blood samples and completed an interoceptive attention task during fMRI. EVs were separated from plasma using a precipitation method. NEEVs were enriched by magnetic streptavidin bead immunocapture utilizing a neural adhesion marker (L1CAM/CD171) biotinylated antibody. The origin of NEEVs was validated with two other neuronal markers - neuronal cell adhesion molecule (NCAM) and ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3). NEEV specificities were confirmed by flow cytometry, western blot, particle size analyzer, and transmission electron microscopy. NEEV small RNAs were purified and sequenced. Results showed that: (1) MDD exhibited lower NEEV miR-93 expression than HC; (2) within MDD but not HC, those individuals with the lowest NEEV miR-93 expression had the highest serum concentrations of interleukin (IL)-1 receptor antagonist, IL-6, tumor necrosis factor, and leptin; and (3) within HC but not MDD, those participants with the highest miR-93 expression showed the strongest bilateral dorsal mid-insula activation during interoceptive versus exteroceptive attention. Since miR-93 is regulated by stress and affects epigenetic modulation by chromatin re-organization, these results suggest that healthy individuals but not MDD participants show an adaptive epigenetic regulation of insular function during interoceptive processing. Future investigations will need to delineate how specific internal and external environmental conditions contribute to miR-93 expression in MDD and what molecular mechanisms alter brain responsivity to body-relevant signals.


Asunto(s)
Trastorno Depresivo Mayor , Vesículas Extracelulares , Interocepción , MicroARNs , Femenino , Humanos , Masculino , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Estudios de Casos y Controles , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Interocepción/fisiología , Imagen por Resonancia Magnética , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA