Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Bull Exp Biol Med ; 171(3): 393-398, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34297295

RESUMEN

We studied ultrastructure and vesicular structures in endothelial cells of myocardial micro-vessels in burn patients. Electron microscopy revealed a significant decrease in volume density of vesicular structures in the endotheliocytes of myocardial capillaries in patients with burn septicotoxemia. The observed structural signs of endothelial dysfunction revealed in this category of patients can be a promising area for further research and for the development of methods of pathogenetic correction of myocardial disorders in the case of burn injury.


Asunto(s)
Quemaduras/patología , Capilares/ultraestructura , Células Endoteliales/ultraestructura , Miocardio/ultraestructura , Sepsis/patología , Adulto , Autopsia , Quemaduras/complicaciones , Capilares/patología , Caveolas/patología , Caveolas/ultraestructura , Células Endoteliales/patología , Femenino , Humanos , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Miocardio/patología , Sepsis/complicaciones , Vesículas Transportadoras/patología , Vesículas Transportadoras/ultraestructura
2.
Methods Mol Biol ; 2211: 147-170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33336276

RESUMEN

Cell-derived Drug Delivery Systems (DDSs), particularly exosomes, have grown in popularity and have been increasingly explored as novel DDSs, due to their intrinsic targeting capabilities. However, clinical translation of exosomes is impeded by the tedious isolation procedures and poor yield. Cell-derived nanovesicles (CDNs) have recently been produced and proposed as exosome-mimetics. Various methods for producing exosome-mimetics have been developed. In this chapter, we present a simple, efficient, and cost-effective CDNs production method that uses common laboratory equipment (microcentrifuge) and spin cups. Through a series of extrusion and size exclusion steps, CDNs are produced from in vitro cell culture and are found to highly resemble the endogenous exosomes. Thus, we envision that this strategy holds great potential as a viable alternative to exosomes in the development of ideal DDS.


Asunto(s)
Biomimética , Micropartículas Derivadas de Células , Sistemas de Liberación de Medicamentos , Exosomas , Nanopartículas , Vesículas Transportadoras , Animales , Biomarcadores , Biomimética/métodos , Fraccionamiento Celular/métodos , Línea Celular , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestructura , Células Cultivadas , Fenómenos Químicos , Cromatografía en Gel , Sistemas de Liberación de Medicamentos/métodos , Exosomas/metabolismo , Exosomas/ultraestructura , Humanos , Ratones , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura
3.
Methods Mol Biol ; 2233: 43-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222126

RESUMEN

Plasma membrane proteins are amenable to endocytosis assays since they are easily labeled by reagents applied in the extracellular medium. This has been widely exploited to study constitutive endocytosis or ligand-induced receptor endocytosis. Compensatory endocytosis is the mechanism by which components of secretory vesicles are retrieved after vesicle fusion with the plasma membrane in response to cell stimulation and a rise in intracellular calcium. Luminal membrane proteins from secretory vesicles are therefore transiently exposed at the plasma membrane. Here, we described an antibody-based method to monitor compensatory endocytosis in chromaffin cells and present an image-based analysis to quantify endocytic vesicles distribution.


Asunto(s)
Anticuerpos/química , Endocitosis/genética , Biología Molecular/métodos , Vesículas Transportadoras/ultraestructura , Glándulas Suprarrenales/ultraestructura , Calcio/metabolismo , Células Cromafines/ultraestructura , Exocitosis/genética , Humanos , Fusión de Membrana/genética , Vesículas Secretoras/ultraestructura
4.
Microvasc Res ; 133: 104094, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011171

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most vascularized tumor types, and is characterized by development of heterogeneous immature vessels with increased permeability. Here, we analyzed morphology and vascular permeability-related structures in endothelial cells of HCC microvessels. METHODS: Small (Type I) and large (Type II) peritumoral blood microvessels were assessed in HCC-bearing mice. By transmission electron microscopy, endothelial cell cytoplasm area, free transport vesicles, vesiculo-vacuolar organelles and clathrin-coated vesicles were measured. RESULTS: The phenotypic changes in the HCC microvessels included presence of sinusoidal capillarization, numerous luminal microprocesses and abnormal luminal channels, irregular dilatations of interendothelial junctions, local detachment of basement membranes and widened extracellular space. Endothelial cells Type I microvessels showed increased vesicular trafficking-related structures. CONCLUSION: Ultrastructural characteristics of microvessels Type I can associate with HCC new-formed microvessels. The morphological changes observed in HCC microvessels might explain the increased transcellular and paracellular permeability in HCC endothelial cells.


Asunto(s)
Carcinoma Hepatocelular/irrigación sanguínea , Células Endoteliales/ultraestructura , Neoplasias Hepáticas/irrigación sanguínea , Microvasos/ultraestructura , Vesículas Transportadoras/ultraestructura , Animales , Transporte Biológico , Permeabilidad Capilar , Línea Celular Tumoral , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos CBA , Microscopía Electrónica de Transmisión , Microvasos/metabolismo , Vesículas Transportadoras/metabolismo
5.
Mol Biol Cell ; 31(15): 1570-1583, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32432970

RESUMEN

Membrane trafficking during cytokinesis is essential for the delivery of membrane lipids and cargoes to the division site. However, the molecular mechanisms are still incompletely understood. In this study, we demonstrate the importance of uncharacterized fission yeast proteins Mso1 and Sec1 in membrane trafficking during cytokinesis. Fission yeast Mso1 shares homology with budding yeast Mso1 and human Mint1, proteins that interact with Sec1/Munc18 family proteins during vesicle fusion. Sec1/Munc18 proteins and their interactors are important regulators of SNARE complex formation during vesicle fusion. The roles of these proteins in vesicle trafficking during cytokinesis have been barely studied. Here, we show that fission yeast Mso1 is also a Sec1-binding protein and Mso1 and Sec1 localize to the division site interdependently during cytokinesis. The loss of Sec1 localization in mso1Δ cells results in a decrease in vesicle fusion and cytokinesis defects such as slow ring constriction, defective ring disassembly, and delayed plasma membrane closure. We also find that Mso1 and Sec1 may have functions independent of the exocyst tethering complex on the plasma membrane at the division site. Together, Mso1 and Sec1 play essential roles in regulating vesicle fusion and cargo delivery at the division site during cytokinesis.


Asunto(s)
Citocinesis , Fusión de Membrana , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Vesículas Transportadoras/metabolismo , Secuencia de Aminoácidos , Humanos , Proteínas Munc18/metabolismo , Unión Proteica , Transporte de Proteínas , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/química , Vesículas Transportadoras/ultraestructura
6.
J Microsc ; 280(2): 111-121, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32420623

RESUMEN

The plant Golgi apparatus (sensu lato: Golgi stack + Trans Golgi Network, TGN) is a highly polar and mobile key organelle lying at the junction of the secretory and endocytic pathways. Unlike its counterpart in animal cells it does not disassemble during mitosis. It modifies glycoproteins sent to it from the endoplasmic reticulum (ER), it recycles ER resident proteins, it sorts proteins destined for the vacuole from secretory proteins, it receives proteins internalised from the plasma membrane and either recycles them to the plasma membrane or retargets them to the vacuole for degradation. In functional terms the Golgi apparatus can be likened to a car factory, with incoming (COPII traffic) and returning (COPI traffic) railway lines at the entry gate, and a distribution centre (the TGN) at the exit gate of the assembly hall. In the assembly hall we have a conveyor belt system where the incoming car parts are initially assembled (in the cis-area) then gradually modified into different models (processing of secretory cargo) as the cars pass along the production line (cisternal maturation). After being released the trans-area, the cars (secretory cargos) are moved out of the assembly hall and passed on to the distribution centre (TGN), where the various models are placed onto different trains (cargo sorting into carrier vesicles) for transport to the car dealers. Cars with motor problems are returned to the factory for repairs (endocytosis to the TGN). This simple analogy also incorporates features of quality control at the COPII entry gate with defective parts being returned to the manufacturing center (the ER) via the COPI trains (vesicles). In recent years, numerous studies have contributed to our knowledge on Golgi function and structure in both animals, yeast and plants. This review, rather than giving a balanced account of the structure as well as of the function of the Golgi apparatus has purposely a marked slant towards plant Golgi ultrastructure integrating findings from the mammalian/animal field.


Asunto(s)
Aparato de Golgi/ultraestructura , Células Vegetales/ultraestructura , Vesículas Cubiertas/ultraestructura , Retículo Endoplásmico/ultraestructura , Microscopía Electrónica , Vesículas Secretoras/ultraestructura , Vesículas Transportadoras/ultraestructura , Red trans-Golgi/ultraestructura
7.
J Agric Food Chem ; 68(20): 5606-5615, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32227934

RESUMEN

Rubber tree is an economically important tropical crop. Its endophytic bacterial strain Serratia marcescens ITBB B5-1 contains an intracellular macrovesicle and red pigment. In this research, the red pigment was identified as prodigiosin by quadrupole time-of-flight mass spectrometry. Prodigiosin has a wide range of potential medical values such as anticancer and antiorgan transplant rejection. The strain ITBB B5-1 accumulated prodigiosin up to 2000 mg/L, which is higher production compared to most known Serratia strains. The formation of the macrovesicle and prodigiosin biosynthesis were highly associated and were both temporal- and temperature-dependent. A mutant strain B5-1mu that failed to produce prodigiosin was obtained by ultraviolet mutagenesis. Whole genome sequencing of wild-type and mutant strains indicated that the PigC gene encoding the last-step enzyme in the prodigiosin biosynthesis pathway was mutated in B5-1mu by a 17-bp deletion. Transmission electron microscopy analysis showed that the macrovesicle was absent in the mutant strain, indicating that formation of the macrovesicle relied on prodigiosin biosynthesis. Immunoelectron microscopy using prodigiosin-specific antiserum showed the presence of prodigiosin in the macrovesicle, the cell wall, and the extracellular vesicles, while immuno-reaction was not observed in the mutant cell. These results indicate that the macrovesicle serves as a storage organelle of prodigiosin, and secretes prodigiosin into cell envelop and culture medium as extracellular vesicles.


Asunto(s)
Endófitos/genética , Endófitos/metabolismo , Hevea/microbiología , Prodigiosina/biosíntesis , Serratia marcescens/genética , Serratia marcescens/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Endófitos/ultraestructura , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Microscopía Inmunoelectrónica , Mutación , Serratia marcescens/ultraestructura , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura
8.
Cell Microbiol ; 21(8): e13035, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31042331

RESUMEN

We previously identified a Neisseria flavescens strain in the duodenum of celiac disease (CD) patients that induced immune inflammation in ex vivo duodenal mucosal explants and in CaCo-2 cells. We also found that vesicular trafficking was delayed after the CD-immunogenic P31-43 gliadin peptide-entered CaCo-2 cells and that Lactobacillus paracasei CBA L74 (L. paracasei-CBA) supernatant reduced peptide entry. In this study, we evaluated if metabolism and trafficking was altered in CD-N. flavescens-infected CaCo-2 cells and if any alteration could be mitigated by pretreating cells with L. paracasei-CBA supernatant, despite the presence of P31-43. We measured CaCo-2 bioenergetics by an extracellular flux analyser, N. flavescens and P31-43 intracellular trafficking by immunofluorescence, cellular stress by TBARS assay, and ATP by bioluminescence. We found that CD-N. flavescens colocalised more than control N. flavescens with early endocytic vesicles and more escaped autophagy thereby surviving longer in infected cells. P31-43 increased colocalisation of N. flavescens with early vesicles. Mitochondrial respiration was lower (P < .05) in CD-N. flavescens-infected cells versus not-treated CaCo-2 cells, whereas pretreatment with L. paracasei-CBA reduced CD-N. flavescens viability and improved cell bioenergetics and trafficking. In conclusion, CD-N. flavescens induces metabolic imbalance in CaCo-2 cells, and the L. paracasei-CBA probiotic could be used to correct CD-associated dysbiosis.


Asunto(s)
Lacticaseibacillus paracasei/química , Mitocondrias/efectos de los fármacos , Neisseria/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Probióticos/farmacología , Adenosina Trifosfato/agonistas , Adenosina Trifosfato/metabolismo , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/microbiología , Autofagia/efectos de los fármacos , Autofagia/genética , Células CACO-2 , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/terapia , Medios de Cultivo Condicionados/farmacología , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/terapia , Expresión Génica , Gliadina/antagonistas & inhibidores , Gliadina/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Lacticaseibacillus paracasei/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Neisseria/genética , Neisseria/crecimiento & desarrollo , Neisseria/patogenicidad , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Microsc Microanal ; 24(5): 553-563, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30334512

RESUMEN

Emerging evidence from various studies indicates that plasmid DNA (pDNA) is internalized by cells through an endocytosis-like process when it is used for electrotransfection. To provide morphological evidence of the process, we investigated ultrastructures in cells that were associated with the electrotransfected pDNA, using immunoelectron microscopy. The results demonstrate that four endocytic pathways are involved in the uptake of the pDNA, including caveolae- and clathrin-mediated endocytosis, macropinocytosis, and the clathrin-independent carrier/glycosylphosphatidylinositol-anchored protein-enriched early endosomal compartment (CLIC/GEEC) pathway. Among them, macropinocytosis is the most common pathway utilized by cells having various pDNA uptake capacities, and the CLIC/GEEC pathway is observed primarily in human umbilical vein endothelial cells. Quantitatively, the endocytic pathways are more active in easy-to-transfect cells than in hard-to-transfect ones. Taken together, our data provide ultrastructural evidence showing that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA.


Asunto(s)
Endocitosis/fisiología , Transfección/métodos , Vesículas Transportadoras/genética , Vesículas Transportadoras/ultraestructura , Transporte Biológico/genética , Transporte Biológico/fisiología , Proteínas de Ciclo Celular , Línea Celular , Clatrina , ADN/metabolismo , Digoxina , Electricidad , Células Endoteliales , Proteínas Ligadas a GPI , Técnicas de Transferencia de Gen , Humanos , Microscopía Inmunoelectrónica/métodos , Pinocitosis , Plásmidos/genética , Plásmidos/metabolismo , Adhesión del Tejido , Vesículas Transportadoras/fisiología , Venas
10.
Nat Commun ; 9(1): 3958, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262884

RESUMEN

Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including 'Dynamic Organellar Maps', to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the "ATG9A reservoir" required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Biológicos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Fenotipo , Unión Proteica , Proteómica , Vesículas Transportadoras/ultraestructura , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
11.
J Biosci ; 43(3): 431-435, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30002262

RESUMEN

Membrane remodelling or the bending and rupture of the lipid bilayer occurs during diverse cellular processes such as cell division, synaptic transmission, vesicular transport, organelle biogenesis and sporulation. These activities are brought about by the localized change in membrane curvature, which in turn causes lipid-packing stress, of a planar lipid bilayer by proteins. For instance, vesicular transport processes are typically characterized by the cooperative recruitment of proteins that induce budding of a planar membrane and catalyse fission of the necks of membrane buds to release vesicles. The analysis of such membrane remodelling reactions has traditionally been restricted to electron microscopy-based approaches or force spectroscopic analysis of membrane tethers pulled from liposome-based model membrane systems. Our recent work has demonstrated the facile creation of tubular model membrane systems of supported membrane tubes (SMrTs), which mimic late-stage intermediates of typical vesicular transport reactions. This review addresses the nature of such an assay system and a fluorescence-intensity-based analysis of changes in tube dimensions that is indicative of the membrane remodelling capacity of proteins.


Asunto(s)
Membrana Celular/ultraestructura , Membrana Dobles de Lípidos/química , Liposomas/ultraestructura , Microscopía Fluorescente/métodos , Microtúbulos/ultraestructura , Vesículas Transportadoras/ultraestructura , Animales , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , División Celular , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Biogénesis de Organelos , Fosfolípidos/química , Fosfolípidos/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
12.
Neuron ; 98(6): 1184-1197.e6, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29953872

RESUMEN

Ultrafast endocytosis generates vesicles from the plasma membrane as quickly as 50 ms in hippocampal neurons following synaptic vesicle fusion. The molecular mechanism underlying the rapid maturation of these endocytic pits is not known. Here we demonstrate that synaptojanin-1, and its partner endophilin-A, function in ultrafast endocytosis. In the absence of synaptojanin or endophilin, the membrane is rapidly invaginated, but pits do not become constricted at the base. The 5-phosphatase activity of synaptojanin is involved in formation of the neck, but 4-phosphatase is not required. Nevertheless, these pits are eventually cleaved into vesicles; within a 30-s interval, synaptic endosomes form and are resolved by clathrin-mediated budding. Then synaptojanin and endophilin function at a second step to aid with the removal of clathrin coats from the regenerated vesicles. These data together suggest that synaptojanin and endophilin can mediate membrane remodeling on a millisecond timescale during ultrafast endocytosis.


Asunto(s)
Aciltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Endocitosis/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Vesículas Transportadoras/metabolismo , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Membrana Celular , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Endosomas/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas , Vesículas Transportadoras/ultraestructura
13.
J Morphol ; 279(5): 609-615, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29383750

RESUMEN

Nuclear egress, also referred to as nuclear envelope (NE) budding, is a process of transport in which vesicles containing molecular complexes or viral particles leave the nucleus through budding from the inner nuclear membrane (INM) to enter the perinuclear space. Following this event, the perinuclear vesicles (PNVs) fuse with the outer nuclear membrane (ONM), where they release their contents into the cytoplasm. Nuclear egress is thought to participate in many functions such as viral replication, cellular differentiation, and synaptic development. The molecular basis for nuclear egress is now beginning to be elucidated. Here, we observe in the sea urchin gastrula, using serial section transmission electron microscopy, strikingly abundant PNVs containing as yet unidentified granules that resemble the ribonucleoprotein complexes (RNPs) previously observed in similar types of PNVs. Some PNVs were observed in the process of fusion with the ONM where they appeared to release their contents into the cytoplasm. These vesicles were abundantly observed in all three presumptive germ layers. These findings indicate that nuclear egress is likely to be an important mechanism for nucleocytoplasmic transfer during sea urchin development. The sea urchin may be a useful model to characterize further and gain a better understanding of the process of nuclear egress.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Erizos de Mar/fisiología , Erizos de Mar/ultraestructura , Vesículas Transportadoras/ultraestructura , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Gástrula , Microscopía Electrónica de Transmisión , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Vesículas Transportadoras/metabolismo
14.
Methods Mol Biol ; 1662: 137-150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861824

RESUMEN

In plants, the partitioning of daughter cells during cytokinesis is achieved via physical insertion of a membranous cell plate within the dividing parent cell. It is a cellular process of extensive protein secretion and membrane trafficking toward the plane of cell division and the cytoskeleton is an important facilitator of this process. A specialized cytoskeletal array termed phragmoplast expands centrifugally throughout cytokinesis and directs, mostly Golgi-derived vesicles that ultimately fuse to form the developing cell plate. The function of the phragmoplast in guiding cell plate synthesis has strongly motivated many scientists to monitor its dynamic behavior. In this chapter, we present an overview of basic principles and methods concerning the live imaging of cytokinetic plant cells using confocal laser scanning microscopy (CLSM) and the analysis of phragmoplast expansion.


Asunto(s)
Arabidopsis/ultraestructura , Citocinesis , Citoesqueleto/ultraestructura , Aparato de Golgi/ultraestructura , Células Vegetales/ultraestructura , Vesículas Transportadoras/ultraestructura , Arabidopsis/genética , Arabidopsis/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestructura , Citoesqueleto/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Genes Reporteros , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Microscopía Confocal/métodos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Compuestos de Piridinio/química , Compuestos de Amonio Cuaternario/química , Vesículas Transportadoras/metabolismo
15.
J Am Heart Assoc ; 6(7)2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724654

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) disruption aggravates brain injury induced by intracerebral hemorrhage (ICH); however, the mechanisms of BBB damage caused by ICH remain elusive. Mfsd2a (major facilitator superfamily domain containing 2a) has been known to play an essential role in BBB formation and function. In this study, we investigated the role and underlying mechanisms of Mfsd2a in BBB permeability regulation after ICH. METHODS AND RESULTS: Using ICH models, we found that Mfsd2a protein expression in perihematomal brain tissues was significantly decreased after ICH. Knockdown and knockout of Mfsd2a in mice markedly increased BBB permeability, neurological deficit score, and brain water contents after ICH, and these were rescued by overexpressing Mfsd2a in perihematomas. Moreover, we found that Mfsd2a regulation of BBB permeability after ICH correlated with changes in vesicle number. Expression profiling of tight junction proteins showed no differences in Mfsd2a knockdown, Mfsd2a knockout, and Mfsd2a overexpression mice. However, using electron microscopy following ICH, we observed a significant increase in pinocytotic vesicle number in Mfsd2a knockout mice and decreased the number of pinocytotic vesicles in mouse brains with Mfsd2a overexpression. Finally, using multiple reaction monitoring, we screened out 3 vesicle trafficking-related proteins (Srgap2, Stx7, and Sec22b) from 31 vesicle trafficking-related proteins that were markedly upregulated in Mfsd2a knockout mice compared with controls after ICH. CONCLUSIONS: In summary, our results suggest that Mfsd2a may protect against BBB injury by inhibiting vesicular transcytosis following ICH.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Hemorragia Cerebral/metabolismo , Células Endoteliales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transcitosis , Vesículas Transportadoras/metabolismo , Animales , Conducta Animal , Barrera Hematoencefálica/ultraestructura , Proteínas Portadoras/metabolismo , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Hemorragia Cerebral/prevención & control , Modelos Animales de Enfermedad , Células Endoteliales/ultraestructura , Proteínas Activadoras de GTPasa , Predisposición Genética a la Enfermedad , Masculino , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Simportadores , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Factores de Tiempo , Vesículas Transportadoras/ultraestructura
16.
Acta Neuropathol ; 134(4): 629-653, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28527044

RESUMEN

Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Transporte Biológico/fisiología , Vesículas Transportadoras/metabolismo , Animales , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Fluoresceínas , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Masculino , Neuronas/metabolismo , Neuronas/ultraestructura , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosfatidilgliceroles , Ratas , Vesículas Transportadoras/ultraestructura , Liposomas Unilamelares , alfa-Sinucleína/metabolismo
17.
Eur J Cell Biol ; 96(4): 356-368, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28372831

RESUMEN

γ2 adaptin is homologous to γ1, but is only expressed in vertebrates while γ1 is found in all eukaryotes. We know little about γ2 functions and their relation to γ1. γ1 is an adaptin of the heterotetrameric AP-1 complexes, which sort proteins in and do form clathrin-coated transport vesicles and they also regulate maturation of early endosomes. γ1 knockout mice develop only to blastocysts and thus γ2 does not compensate γ1-deficiency in development. γ2 has not been classified as a clathrin-coated vesicle adaptor protein in proteome analyses and functions for monomeric γ2 in endosomal protein sorting have been proposed, but adaptin interaction studies suggested formation of heterotetrameric AP-1/γ2 complexes. We detected γ2 at the trans-Golgi network, on peripheral vesicles and identified γ2 clathrin-coated vesicles in mice. Ubiquitous σ1A and tissue-specific σ1B adaptins bind γ2 and γ1. σ1B knockout in mice does not effect γ1/σ1A AP-1 levels, but γ2/σ1A AP-1 levels are increased in brain and adipocytes. Also γ2 is essential in development. In zebrafish AP-1/γ2 and AP-1/γ1 fulfill different, essential functions in brain and the vascular system.


Asunto(s)
Subunidades gamma de Complejo de Proteína Adaptadora/metabolismo , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Encéfalo/metabolismo , Clatrina/metabolismo , Vesículas Transportadoras/metabolismo , Red trans-Golgi/metabolismo , Subunidades gamma de Complejo de Proteína Adaptadora/química , Subunidades gamma de Complejo de Proteína Adaptadora/genética , Subunidades sigma de Complejo de Proteína Adaptadora/química , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Adipocitos/citología , Adipocitos/metabolismo , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Encéfalo/crecimiento & desarrollo , Línea Celular , Clatrina/genética , Embrión de Mamíferos , Embrión no Mamífero , Endosomas/metabolismo , Endosomas/ultraestructura , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas/genética , Transducción de Señal , Vesículas Transportadoras/ultraestructura , Pez Cebra , Red trans-Golgi/ultraestructura
18.
Chembiochem ; 18(12): 1053-1060, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28374483

RESUMEN

Early endosomes are dynamic intracellular compartments that fuse with incoming endocytic carrier vesicles and associated cargoes from the plasma membrane. It has been long known that the chemical structures of lipids confer striking properties and rich biochemistry on bilayers. Although the organisational principles of the plasma membrane are relatively better understood, understanding endosomal membranes has been challenging. It has become increasingly apparent that endosomal membranes, because of their lipid compositions and interactions, use distinct lipid chemistries. We discuss the biochemical and biophysical phenomena in play at the early endosomal membrane. We focus on cholesterol, phosphoinositides, and phosphatidylserine and their clear roles in endosome functions. We discuss the various principles and mechanisms underpinning how these lipids are implicated at the functional level in the working of endosomes, and we summarise early endosomes as a multimodal organelle employing distinct lipid-specific mechanisms.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Endosomas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Membrana Celular/ultraestructura , Endocitosis/genética , Endosomas/ultraestructura , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Regulación de la Expresión Génica , Humanos , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transducción de Señal , Vesículas Transportadoras/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
19.
Sci Rep ; 6: 38277, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27910904

RESUMEN

During skin pigmentation in amniotes, melanin synthesized in the melanocyte is transferred to keratinocytes by a particle called the melanosome. Previous studies, mostly using dissociated cultured cells, have proposed several different models that explain how the melanosome transfer is achieved. Here, using a technique that labels the plasma membrane of melanocytes within a three-dimensional system that mimics natural tissues, we have visualized the plasma membrane of melanocytes with EGFP in chicken embryonic skin. Confocal time-lapse microscopy reveals that the melanosome transfer is mediated, at least in part, by vesicles produced by plasma membrane. Unexpectedly, the vesicle release is accompanied by the membrane blebbing of melanocytes. Blebs that have encapsulated a melanosome are pinched off to become vesicles, and these melanosome-containing vesicles are finally engulfed by neighboring keratinocytes. For both the membrane blebbing and vesicle release, Rho small GTPase is essential. We further show that the membrane vesicle-mediated melanosome transfer plays a significant role in the skin pigmentation. Given that the skin pigmentation in inter-feather spaces in chickens is similar to that in inter-hair spaces of humans, our findings should have important consequences in cosmetic medicine.


Asunto(s)
Proteínas Aviares/genética , Queratinocitos/metabolismo , Melaninas/genética , Melanocitos/metabolismo , Melanosomas/metabolismo , Proteína de Unión al GTP rhoA/genética , Animales , Proteínas Aviares/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Queratinocitos/ultraestructura , Melaninas/biosíntesis , Melanocitos/ultraestructura , Melanosomas/ultraestructura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Pigmentación de la Piel/genética , Imagen de Lapso de Tiempo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura , Proteína de Unión al GTP rhoA/metabolismo
20.
Neuron ; 92(5): 1020-1035, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27840001

RESUMEN

Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using a knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, ß- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses.


Asunto(s)
Actinas/genética , Endocitosis/genética , Hipocampo/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Western Blotting , Hipocampo/citología , Hipocampo/ultraestructura , Inmunohistoquímica , Cinética , Ratones , Ratones Noqueados , Microscopía Electrónica , Neuronas/ultraestructura , Terminales Presinápticos/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Vesículas Transportadoras/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA