Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Cell Rep ; 37(10): 110077, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879280

RESUMEN

Viruses rearrange host membranes to support different entry steps. Polyomavirus simian virus 40 (SV40) reorganizes the endoplasmic reticulum (ER) membrane to generate focus structures that enable virus ER-to-cytosol escape, a decisive infection step. The molecular architecture of the ER exit site that might illuminate why it is ideally suited for membrane penetration is unknown. Here 3D focused ion beam scanning electron microscopy (FIB-SEM) reconstruction reveals that the ER focus structure consists of multi-tubular ER junctions where SV40 preferentially localizes, suggesting that tubular branch points are virus ER-to-cytosol penetration sites. Functional analysis demonstrates that lunapark-an ER membrane protein that typically stabilizes three-way ER junctions-relocates to the ER foci, where it supports focus formation, leading to SV40 ER escape and infection. Our results reveal how a virus repurposes the activity of an ER membrane protein to form a virus-induced ER substructure required for membrane escape and suggest that ER tubular junctions are vulnerable sites exploited by viruses for membrane penetration.


Asunto(s)
Citosol/virología , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Virus 40 de los Simios/metabolismo , Internalización del Virus , Animales , Línea Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Interacciones Huésped-Patógeno , Membranas Intracelulares/ultraestructura , Membranas Intracelulares/virología , Masculino , Proteínas de la Membrana/genética , Virus 40 de los Simios/patogenicidad , Virus 40 de los Simios/ultraestructura
2.
Nanoscale ; 11(21): 10160-10166, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30994643

RESUMEN

Here we show the encapsulation of 35 nm diameter, nearly-spherical, DNA origami by self-assembly of SV40-like (simian virus 40) particles. The self-assembly of this new type of nanoparticles is highly reproducible and efficient. The structure of these particles was determined by cryo-EM. The capsid forms a regular SV40 lattice of T = 7d icosahedral symmetry and the structural features of encapsulated DNA origami are fully visible. These particles are a promising biomaterial for use in various medical applications.


Asunto(s)
Cápside/química , ADN/química , Nanopartículas/química , Virus 40 de los Simios/química , Cápside/ultraestructura , ADN/ultraestructura , Nanopartículas/ultraestructura , Virus 40 de los Simios/ultraestructura
3.
ACS Chem Biol ; 12(5): 1327-1334, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28323402

RESUMEN

Simian virus 40 capsid protein (VP1) is a unique system for studying substrate-dependent assembly of a nanoparticle. Here, we investigate a simplest case of this system where 12 VP1 pentamers and a single polyanion, e.g., RNA, form a T = 1 particle. To test the roles of polyanion substrate length and structure during assembly, we characterized the assembly products with size exclusion chromatography, transmission electron microscopy, and single-particle resistive-pulse sensing. We found that 500 and 600 nt RNAs had the optimal length and structure for assembly of uniform T = 1 particles. Longer 800 nt RNA, shorter 300 nt RNA, and a linear 600 unit poly(styrene sulfonate) (PSS) polyelectrolyte produced heterogeneous populations of products. This result was surprising as the 600mer PSS and 500-600 nt RNA have similar mass and charge. Like ssRNA, PSS also has a short 4 nm persistence length, but unlike RNA, PSS lacks a compact tertiary structure. These data indicate that even for flexible substrates, shape as well as size affect assembly and are consistent with the hypothesis that work, derived from protein-protein and protein-substrate interactions, is used to compact the substrate.


Asunto(s)
Proteínas de la Cápside/fisiología , Cápside/química , Virus 40 de los Simios/ultraestructura , Ensamble de Virus , Polielectrolitos , Polimerizacion , Polímeros , Poliestirenos , ARN
4.
PLoS Pathog ; 7(5): e1002037, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21589906

RESUMEN

Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer.


Asunto(s)
Citosol/virología , Retículo Endoplásmico/virología , Virus 40 de los Simios/fisiología , Virión/fisiología , Animales , Transporte Biológico , Proteínas de la Cápside/metabolismo , Línea Celular , Chlorocebus aethiops , Citosol/metabolismo , Citosol/ultraestructura , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Genoma Viral/genética , Inmunoprecipitación , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virología , Membrana Dobles de Lípidos/metabolismo , Microscopía Electrónica , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño , Virus 40 de los Simios/química , Virus 40 de los Simios/genética , Virus 40 de los Simios/ultraestructura , Virión/química , Virión/genética , Virión/ultraestructura
5.
J Biol Chem ; 284(50): 34703-12, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19822519

RESUMEN

The calcium bridge between the pentamers of polyoma viruses maintains capsid metastability. It has been shown that viral infection is profoundly inhibited by the substitution of lysine for glutamate in one calcium-binding residue of the SV40 capsid protein, VP1. However, it is unclear how the calcium bridge affects SV40 infectivity. In this in vitro study, we analyzed the influence of host cell components on SV40 capsid stability. We used an SV40 mutant capsid (E330K) in which lysine had been substituted for glutamate 330 in protein VP1. The mutant capsid retained the ability to interact with the SV40 cellular receptor GM1, and the internalized mutant capsid accumulated in caveolin-1-mediated endocytic vesicles and was then translocated to the endoplasmic reticulum (ER) region. However, when placed in ER-rich microsome, the mutant capsid retained its spherical structure in contrast to the wild type, which disassembled. Structural analysis of the mutant capsid with cryo-electron microscopy and image reconstruction revealed altered pentamer coordination, possibly as a result of electrostatic interaction, although its overall structure resembled that of the wild type. These results indicate that the calcium ion serves as a trigger at the pentamer interface, which switches on capsid disassembly, and that the failure of the E330K mutant capsid to disassemble is attributable to an inadequate triggering system. Our data also indicate that calcium depletion-induced SV40 capsid disassembly may occur in the ER region and that this is essential for successful SV40 infection.


Asunto(s)
Calcio/metabolismo , Cápside , Virus 40 de los Simios/metabolismo , Virus 40 de los Simios/ultraestructura , Internalización del Virus , Animales , Sitios de Unión , Cápside/metabolismo , Cápside/ultraestructura , Línea Celular , Microscopía por Crioelectrón , Endocitosis/fisiología , Gangliósido G(M1)/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Virus 40 de los Simios/genética
6.
Small ; 5(6): 718-26, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19242943

RESUMEN

Unique spectral properties of quantum dots (QDs) enable ultrasensitive and long-term biolabeling. Aiming to trace the infection, movement, and localization of viruses in living cells, QD-containing virus-like particles (VLPs) of simian virus 40 (SV40), termed SVLP-QDs, are constructed by in vitro self-assembly of the major capsid protein of SV40. SVLP-QDs show homogeneity in size ( approximately 24 nm), similarity in spectral properties to unencapsidated QDs, and considerable stability. When incubated with living cells, SVLP-QDs are shown to enter the cells by caveolar endocytosis, travel along the microtubules, and accumulate in the endoplasmic reticulum. This process mimics the early infection steps of SV40. This is the first paradigm of imaging viral behaviors with encapsidated QDs in living cells. The method may provide a new alternative for various purposes, such as tracing viruses or viral components, targeted nanoparticle delivery, and probing of drug delivery.


Asunto(s)
Cápside/ultraestructura , Aumento de la Imagen/métodos , Microscopía Fluorescente/métodos , Puntos Cuánticos , Virus 40 de los Simios/fisiología , Virus 40 de los Simios/ultraestructura , Células Vero/citología , Animales , Cápside/química , Chlorocebus aethiops
7.
Microsc Res Tech ; 71(9): 659-62, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18512738

RESUMEN

Novel approach in low voltage transmission electron microscopy (TEM) has revealed the presence of SV40 viral like particles in the secretory zymogen granules and in spherical membrane-bound dense bodies of SV40 infected pancreatic cells. The presence of SV40 antigen in these cellular compartments was confirmed by immunocytochemistry of the VP1 antigen. Visualization of the viral particles was only possible by examining ultrathin tissue sections with low-voltage TEM that significantly enhances imaging contrast. Results indicate that following infection of the cell entry and trafficking of the viral particles are present in unique cellular compartments such as ER, dense bodies, and secretory granules.


Asunto(s)
Gránulos Citoplasmáticos/virología , Microscopía Electrónica de Transmisión/métodos , Páncreas/citología , Virus 40 de los Simios/ultraestructura , Animales , Compartimento Celular , Gránulos Citoplasmáticos/metabolismo , Páncreas/ultraestructura
8.
Pancreas ; 36(4): 411-6, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18437088

RESUMEN

OBJECTIVES: Viral vector uptake into the pancreas is rare. The few viral vectors reported to transduce in vivo pancreatic islets after systemic injection required additional physical measures, such as direct pancreatic injection or hepatic vessel clamping. Because pancreatic islet uptake of the human polyomavirus family member BK virus was previously reported in hamsters after systemic administration, we hypothesized that SV40, a polyomavirus member remarkably similar to BK virus, may also infect the pancreas. METHODS: We injected intravenously a low dose of SV40, unaided by any other physical or chemical means, and evaluated viral uptake by pancreatic islets and pancreatic exocrine tissue via polymerase chain reaction, Western blot, electron microscopy, immunofluorescent microscopy, and protein A-gold immunocytochemistry. RESULTS: Pancreatic uptake of SV40 was comparable to other major organs (ie, liver and spleen). SV40 viral particles were detected in both pancreatic islets and acini. In pancreatic islets, all islet cell types were infected by SV40, albeit the infection rate of glucagon-producing alpha cells surpassed beta- and delta-islet cells. Low-dose SV40 administration was not sufficient to induce heterologous gene expression in the pancreas. CONCLUSIONS: Our study shows that pancreatic islet and acinar cell uptake of SV40 is feasible with a single, low-dose intravenous injection. However, this dose did not result in gene delivery into the murine pancreas.


Asunto(s)
Islotes Pancreáticos/virología , Enfermedades Pancreáticas/virología , Virus 40 de los Simios/patogenicidad , Animales , Diabetes Mellitus Tipo 1/virología , Femenino , Regulación de la Expresión Génica , Islotes Pancreáticos/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Enfermedades Pancreáticas/patología , Reacción en Cadena de la Polimerasa , Virus 40 de los Simios/aislamiento & purificación , Virus 40 de los Simios/ultraestructura
9.
J Biotechnol ; 134(1-2): 181-92, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18243389

RESUMEN

The capsid of SV40 is regarded as a potential nano-capsule for delivery of biologically active materials. The SV40 capsid is composed of 72 pentamers of the VP1 major capsid protein and 72 copies of the minor coat proteins VP2/3. We have previously demonstrated that, when expressed in insect Sf9 cells by the baculovirus system, VP1 self-assembles into virus-like particles (VP1-VLPs), which are morphologically indistinguishable from the SV40 virion and can be easily purified. Here, we show that heterologous proteins fused to VP2/3 can be efficiently incorporated into the VP1-VLPs. Using EGFP as a model protein, we have optimized this encapsulation system and found that fusion to the C-terminus of VP2/3 is preferable and that the C-terminal VP1-interaction domain of VP2/3 is sufficient for incorporation into VLPs. The VLPs encapsulating EGFP retain the ability to attach to the cell surface and enter the cells. Using this system, we have encapsulated yeast cytosine deaminase (yCD), a prodrug-modifying enzyme that converts 5-fluorocytosine to 5-fluorouracil, into VLPs. When CV-1 cells are challenged by the yCD-encapsulating VLPs, they become sensitive to 5-fluorocytosine-induced cell death. Therefore, proteins of interest can be encapsulated in VP1-VLPs by fusion to VP2/3 and successfully delivered to cells.


Asunto(s)
Proteínas de la Cápside/genética , Nanotecnología/métodos , Virus 40 de los Simios/genética , Baculoviridae/genética , Baculoviridae/ultraestructura , Proteínas de la Cápside/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Microscopía Electrónica , Modelos Biológicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Virus 40 de los Simios/ultraestructura
10.
Cell ; 131(3): 516-29, 2007 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17981119

RESUMEN

Cell entry of Simian Virus 40 (SV40) involves caveolar/lipid raft-mediated endocytosis, vesicular transport to the endoplasmic reticulum (ER), translocation into the cytosol, and import into the nucleus. We analyzed the effects of ER-associated processes and factors on infection and on isolated viruses and found that SV40 makes use of the thiol-disulfide oxidoreductases, ERp57 and PDI, as well as the retrotranslocation proteins Derlin-1 and Sel1L. ERp57 isomerizes specific interchain disulfides connecting the major capsid protein, VP1, to a crosslinked network of neighbors, thus uncoupling about 12 of 72 VP1 pentamers. Cryo-electron tomography indicated that loss of interchain disulfides coupled with calcium depletion induces selective dissociation of the 12 vertex pentamers, a step likely to mimic uncoating of the virus in the cytosol. Thus, the virus utilizes the protein folding machinery for initial uncoating before exploiting the ER-associated degradation machinery presumably to escape from the ER lumen into the cytosol.


Asunto(s)
Retículo Endoplásmico/metabolismo , Pliegue de Proteína , Virus 40 de los Simios/fisiología , Internalización del Virus , Cisteína/metabolismo , Disulfuros/metabolismo , Células HeLa , Humanos , Isomerismo , Infecciones por Polyomavirus/virología , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Virus 40 de los Simios/ultraestructura , Compuestos de Sulfhidrilo/metabolismo , Infecciones Tumorales por Virus/virología , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/ultraestructura
11.
Biochem Biophys Res Commun ; 353(2): 424-30, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17189615

RESUMEN

SV40 assembles in the nucleus by addition of capsid proteins to the minichromosome. The VP15VP2/3 capsomer is composed of a pentamer of the major protein VP1 complexed with a monomer of a minor protein, VP2 or VP3. In the capsid, the capsomers are bound together via their flexible carboxy-terminal arms. Our previous studies suggested that the capsomers are recruited to the packaging signal ses via avid interaction with Sp1. During assembly Sp1 is displaced, allowing chromatin compaction. Here we investigated the interactions in vitro of VP1(5)VP2/3 capsomers with the entire SV40 genome, using mutant VP1 deleted in the carboxy-arm that cannot assemble, but retains DNA-binding capacity. EM revealed that VP1(5)VP2/3 complexes bind non-specifically at random locations around the DNA. Sp1 was absent from mature virions. The findings suggest that multiple capsomers attach simultaneously to the viral genome, increasing their local concentration, facilitating rapid, concerted assembly reaction and removal of Sp1.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , ADN Viral/química , ADN Viral/ultraestructura , Virus 40 de los Simios/química , Virus 40 de los Simios/ultraestructura , Ensamble de Virus , Sitios de Unión , Sustancias Macromoleculares/química , Microscopía Electrónica , Conformación Molecular , Unión Proteica
12.
Uirusu ; 55(1): 19-26, 2005 Jun.
Artículo en Japonés | MEDLINE | ID: mdl-16308526

RESUMEN

The endocytic function of caveolae has been controversial for a long time. However, a real-time-imaging analysis of Simian virus 40 (SV40) 's entry in cells has indicated the existence of caveolar endocytosis during virus entry. The caveolae engulfed SV40 virions begin budding from plasma membrane depending on dynamin. SV40 enclosed in caveolae vesicles move to the caveosome, then to the endoplasmic reticulum. In addition, it was demonstrated that human coronavirus-229E enters the cell through caveolae. This review examines the involvement of caveolae in endocytosis used by the viral entry system.


Asunto(s)
Caveolas/fisiología , Caveolas/virología , Coronavirus Humano 229E/patogenicidad , Endocitosis/fisiología , Virus 40 de los Simios/patogenicidad , Caveolina 1/fisiología , Membrana Celular/virología , Coronavirus Humano 229E/ultraestructura , Dinaminas/fisiología , Retículo Endoplásmico/virología , Endosomas/fisiología , Endosomas/virología , Interpretación de Imagen Asistida por Computador/métodos , Microscopía Electrónica/métodos , Virus 40 de los Simios/ultraestructura , Virión/crecimiento & desarrollo
13.
J Neurovirol ; 10(4): 250-4, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15371155

RESUMEN

Episomal simian virus 40 (SV40) DNA was detected in various SV40-immortalized human fibroblast cell lines, without rearrangements or mutations. In these cells, SV40 established a persistent infection with the release of a viral progeny. However, electron microscopy analysis showed that virions are morphologically altered, whereas infectivity assay indicated that viral production was hampered. The data suggest that in SV40-infected human fibroblasts, some cells support a complete SV40 productive cycle, whereas other cells resist to the SV40 infection. This sort of "balance" observed within the same human fibroblast population may be responsible for the semipermissiveness of these cells to SV40 infection.


Asunto(s)
Virus 40 de los Simios/aislamiento & purificación , Virus 40 de los Simios/ultraestructura , Técnicas de Cultivo de Célula/métodos , Línea Celular , Transformación Celular Viral , Fibroblastos/virología , Humanos , Microscopía Electrónica , Factores de Tiempo
14.
J Gen Virol ; 84(Pt 7): 1899-1905, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12810885

RESUMEN

The simian virus 40 (SV40) capsid is composed of 72 pentamers of VP1, the major protein of SV40. These pentamers are arranged in a T=7d icosahedral surface lattice, which is maintained by three types of appropriately arranged, non-equivalent interactions between the pentamers. However, it remains unclear how these interactions are achieved. In this study, the in vitro assembly of recombinant VP1 was analysed. Electron microscopy observations revealed that these recombinant VP1 proteins assembled into structurally polymorphic particles depending on environmental conditions. VP1 pentamers assembled efficiently into virus-like particles (VLPs) when high concentrations of ammonium sulfate were present. However, in the presence of 1 M NaCl and 2 mM CaCl(2) at neutral pH, VP1 pentamers formed not only VLPs but also produced tiny T=1 icosahedral particles and tubular structures. The exclusion of CaCl(2) resulted in the exclusive formation of tiny particles. In contrast, in the presence of 150 mM NaCl at pH 5, the VP1 pentamers produced only extraordinarily long tubular structures. VP1 is thus quite unique in that it can assemble into such diverse structures. These observations provide clues that will help elucidate the mechanisms underlying SV40 capsid formation.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus 40 de los Simios/metabolismo , Virión/ultraestructura , Ensamble de Virus , Animales , Tampones (Química) , Proteínas de la Cápside/genética , Células Cultivadas , Diálisis , Microscopía Electrónica , Proteínas Recombinantes/metabolismo , Virus 40 de los Simios/genética , Virus 40 de los Simios/ultraestructura , Spodoptera , Virión/metabolismo
15.
Mol Biol Cell ; 13(5): 1750-64, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12006667

RESUMEN

Simian virus 40 (SV40) is a nonenveloped virus that has been shown to pass from surface caveolae to the endoplasmic reticulum in an apparently novel infectious entry pathway. We now show that the initial entry step is blocked by brefeldin A and by incubation at 20 degrees C. Subsequent to the entry step, the virus reaches a domain of the rough endoplasmic reticulum by an unknown pathway. This intracellular trafficking pathway is also brefeldin A sensitive. Infection is strongly inhibited by expression of GTP-restricted ADP-ribosylation factor 1 (Arf1) and Sar1 mutants and by microinjection of antibodies to betaCOP. In addition, we demonstrate a potent inhibition of SV40 infection by the dipeptide N-benzoyl-oxycarbonyl-Gly-Phe-amide, which also inhibits late events in cholera toxin action. Our results identify novel inhibitors of SV40 infection and show that SV40 requires COPI- and COPII-dependent transport steps for successful infection.


Asunto(s)
Antivirales/farmacología , Brefeldino A/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Toxina del Cólera/antagonistas & inhibidores , Infecciones por Polyomavirus/metabolismo , Virus 40 de los Simios/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Proteínas Portadoras/inmunología , Chlorocebus aethiops , Dipéptidos/farmacología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Inmunohistoquímica , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Virus 40 de los Simios/efectos de los fármacos , Virus 40 de los Simios/ultraestructura , Temperatura , Células Vero , Proteínas de Transporte Vesicular
16.
Methods Enzymol ; 304: 214-30, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10372362

RESUMEN

This article focused on a number of aspects of the preparation of chromatin and other DNA-protein complexes for conventional transmission EM that are critical for success but may not have been addressed in a single chapter before. These include the importance of optimizing fixation, the generation of active supporting supports, and the use of negative staining as a means of obtaining higher resolution detail than can be garnered from shadow casting methods.


Asunto(s)
Cromatina/ultraestructura , Proteínas de Unión al ADN/ultraestructura , ADN/ultraestructura , Nucleosomas/ultraestructura , Animales , Línea Celular , Núcleo Celular/ultraestructura , Pollos , Cromatina/metabolismo , ADN/metabolismo , ADN Circular/ultraestructura , Proteínas de Unión al ADN/metabolismo , Eritrocitos/ultraestructura , Indicadores y Reactivos , Microscopía Electrónica/métodos , Nucleosomas/metabolismo , Virus 40 de los Simios/ultraestructura
17.
Exp Cell Res ; 246(1): 83-90, 1999 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-9882517

RESUMEN

It was reported earlier that entry of simian virus 40 (SV40) into cells is promoted by a signal transmitted by the virus from the cell surface and that SV40 enters cells through caveolae. It is shown here that bound SV40 begins to partition into a caveolae-enriched Triton X-100-insoluble membrane fraction at 30 min postadsorption. Maximal levels of SV40 were seen in that fraction at 1 h. The sterol-binding agent nystatin, which selectively disrupts the cholesterol-enriched caveolae-containing membrane microdomain, selectively blocked the SV40-induced signal. This implies that the SV40 signal is transmitted from that membrane microdomain. The tyrosine kinase inhibitor genistein, which was earlier shown to block the SV40-induced signal and infectious entry, did not block the partitioning of SV40 into the detergent-insoluble membrane fraction. This shows that the signal is not required for the translocation of SV40 to the detergent-insoluble membrane and is consistent with the finding that the signal is likely transmitted from that membrane microdomain. However, electron microscopy of the Triton X-100-insoluble membrane fraction showed that genistein caused SV40 particles to accumulate at the annuli or mouths of the caveolae. In contrast, most SV40 particles were found enclosed within caveolae in parallel samples from untreated control cells. Together, these results imply that SV40 initially binds to flat detergent-soluble membrane. The virus then translocates to a caveolae-containing detergent-insoluble membrane microdomain. From the flat portion of that membrane microdomain the virus induces a signal which promotes its entry into caveolae.


Asunto(s)
Caveolinas , Membrana Celular/metabolismo , Endocitosis/fisiología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Virus 40 de los Simios/metabolismo , Animales , Northern Blotting , Western Blotting , Caveolina 1 , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Chlorocebus aethiops , Colesterol/metabolismo , Endocitosis/efectos de los fármacos , Genes myc/genética , Genisteína/farmacología , Riñón , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/ultraestructura , Microscopía Electrónica , Nistatina/farmacología , Octoxinol/metabolismo , Transducción de Señal/efectos de los fármacos , Virus 40 de los Simios/efectos de los fármacos , Virus 40 de los Simios/ultraestructura , Solubilidad
18.
J Mol Biol ; 259(2): 249-63, 1996 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-8656427

RESUMEN

Capsids of papilloma and polyoma viruses (papovavirus family) are composed of 72 pentameric capsomeres arranged on a skewed icosahedral lattice (triangulation number of seven, T = 7). Cottontail rabbit papillomavirus (CRPV) was reported previously to be a T = 7laevo (left-handed) structure, whereas human wart virus, simian virus 40, and murine polyomavirus were shown to be T = 7dextro (right-handed). The CRPV structure determined by cryoelectron microscopy and image reconstruction was similar to previously determined structures of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 1 (HPV-1). CRPV capsids were observed in closed (compact) and open (swollen) forms. Both forms have star-shaped capsomeres, as do BPV-1 and HPV-1, but the open CRPV capsids are approximately 2 nm larger in radius. The lattice hands of all papillomaviruses examined in this study were found to be T = 7dextro. In the region of maximum contact, papillomavirus capsomeres interact in a manner similar to that found in polyomaviruses. Although papilloma and polyoma viruses have differences in capsid size (approximately 60 versus approximately 50 nm), capsomere morphology (11 to 12 nm star-shaped versus 8 nm barrel-shaped), and intercapsomere interactions (slightly different contacts between capsomeres), papovavirus capsids have a conserved, 72-pentamer, T = 7dextro structure. These features are conserved despite significant differences in amino acid sequences of the major capsid proteins. The conserved features may be a consequence of stable contacts that occur within capsomeres and flexible links that form among capsomeres.


Asunto(s)
Proteínas de la Cápside , Cápside/ultraestructura , Papillomaviridae/ultraestructura , Poliomavirus/ultraestructura , Animales , Antígenos Virales/química , Papillomavirus Bovino 1/química , Papillomavirus Bovino 1/ultraestructura , Cápside/química , Papillomavirus del Conejo de Rabo Blanco/química , Papillomavirus del Conejo de Rabo Blanco/ultraestructura , Humanos , Papillomaviridae/química , Poliomavirus/química , Conejos , Alineación de Secuencia , Virus 40 de los Simios/química , Virus 40 de los Simios/ultraestructura , Proteínas Estructurales Virales/química
19.
J Mol Biol ; 258(2): 224-39, 1996 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-8627621

RESUMEN

Purified simian virus (SV40) minichromosomes were photoreacted with psoralen under various conditions that moderately destabilize nucleosomes. This assay allows indirect distinction between stable nucleosomes, partially unravelled nucleosomes and nucleosomes containing (or lacking) histone H1. In replicating molecules the passage of the replication machinery destabilizes the nucleosomal organization of the chromatin fiber over a distance of 650 to 1100 bp. In front of the fork, an average of two nucleosomes are destabilized presumably by the dissociation of histone H1 and the advancing replication machinery. On daughter strands, the first nucleosome is detected at a distance of about 260 nucleotides from the elongation point. This nucleosome is interpreted to contain no histone H1, while no stepwise association of (H3-H4)2 tetramers with H2A/H2B dimers on nascent DNA can be detected in vivo. The second nucleosome after the replication fork appears to contain histone H1. The prolonged nuclease sensitivity of newly replicated chromatin described in the literature therefore may not be due to a slow reassociation of histone H1.


Asunto(s)
Replicación del ADN , ADN Viral/biosíntesis , Nucleosomas/fisiología , Virus 40 de los Simios/genética , Replicación Viral , Animales , Línea Celular , Reactivos de Enlaces Cruzados/farmacología , ADN Viral/efectos de los fármacos , ADN Viral/ultraestructura , Ficusina/farmacología , Haplorrinos , Histonas , Concentración de Iones de Hidrógeno , Nucleosomas/ultraestructura , Virus 40 de los Simios/fisiología , Virus 40 de los Simios/ultraestructura
20.
Anat Rec ; 244(1): 28-32, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8838421

RESUMEN

BACKGROUND: T-antigen binding site I has been shown previously to play a role in regulating the proportion of Simian Virus 40 (SV40) chromosomes containing a nuclease hypersensitive promoter region. In order to determine whether these changes in nuclease hypersensitivity were a result of changes in the proportion of SV40 chromosomes, which contained a nucleosome-free promoter region, SV40 chromosomes were visualized by electron microscopy. METHODS: SV40 chromosomes were prepared from cells infected with either wild-type or mutant virus lacking T-antigen binding site I, and the chromosomes were analyzed by electron microscopy for the presence of nucleosome-free regions. RESULTS: Both the wild-type and mutant chromatin were found to contain heterogeneous nucleosome-free promoter regions consisting of small (3-4 times the normal internucleosomal distance) and large (greater than four times the normal internucleosomal distance) regions. Quantification of the proportion of chromosomes containing each type of region indicated that deletion of site I resulted in a 25% increase in the proportion of chromosomes containing a large nucleosome-free region but had no effect on the proportion of chromosomes containing a small nucleosome-free region. CONCLUSIONS: The results indicate that there are two distinct classes of nucleosome-free promoter region in SV40 chromatin and that T-antigen binding to site I is specifically involved in the regulation of only the class that contains a large nucleosome-free region.


Asunto(s)
Antígenos Transformadores de Poliomavirus/metabolismo , Nucleosomas/ultraestructura , Infecciones por Papillomavirus/inmunología , Regiones Promotoras Genéticas/genética , Virus 40 de los Simios/inmunología , Infecciones Tumorales por Virus/inmunología , Animales , Línea Celular , Cromatina/aislamiento & purificación , Cromatina/ultraestructura , Cromosomas/ultraestructura , Microscopía Electrónica , Regiones Promotoras Genéticas/inmunología , Virus 40 de los Simios/genética , Virus 40 de los Simios/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA