Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Vopr Virusol ; 69(2): 162-174, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843022

RESUMEN

The objective is to determine the complete nucleotide sequence and conduct a phylogenetic analysis of genome variants of the Puumala virus isolated in the Saratov region. MATERIALS AND METHODS: The samples for the study were field material collected in the Gagarinsky (formerly Saratovsky), Engelssky, Novoburassky and Khvalynsky districts of the Saratov region in the period from 2019 to 2022. To specifically enrich the Puumala virus genome in the samples, were used PCR and developed a specific primer panel. Next, the resulting PCR products were sequenced and the fragments were assembled into one sequence for each segment of the virus genome. To construct phylogenetic trees, the maximum parsimony algorithm was used. RESULTS: Genetic variants of the Puumala virus isolated in the Saratov region have a high degree of genome similarity to each other, which indicates their unity of origin. According to phylogenetic analysis, they all form a separate branch in the cluster formed by hantaviruses from other subjects of the Volga Federal District. The virus variants from the Republics of Udmurtia and Tatarstan, as well as from the Samara and Ulyanovsk regions, are closest to the samples from the Saratov region. CONCLUSION: The data obtained show the presence of a pronounced territorial confinement of strains to certain regions or areas that are the natural biotopes of their carriers. This makes it possible to fairly accurately determine the territory of possible infection of patients and/or the circulation of carriers of these virus variants based on the sequence of individual segments of their genome.


Asunto(s)
Genoma Viral , Filogenia , Virus Puumala , Virus Puumala/genética , Virus Puumala/clasificación , Virus Puumala/aislamiento & purificación , Humanos , Federación de Rusia/epidemiología , Variación Genética , Fiebre Hemorrágica con Síndrome Renal/virología , Animales
2.
J Clin Virol ; 172: 105672, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574565

RESUMEN

Orthohantaviruses, transmitted primarily by rodents, cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome in the Americas. These viruses, with documented human-to-human transmission, exhibit a wide case-fatality rate, 0.5-40 %, depending on the virus species, and no vaccine or effective treatment for severe Orthohantavirus infections exists. In Europe, the Puumala virus (PUUV), carried by the bank vole Myodes glareolus, causes a milder form of HFRS. Despite the reliance on serology and PCR for diagnosis, the three genomic segments of Swedish wild-type PUUV have yet to be completely sequenced. We have developed a targeted hybrid-capture method aimed at comprehensive genomic sequencing of wild-type PUUV isolates and the identification of other Orthohantaviruses. Our custom-designed panel includes >11,200 probes covering the entire Orthohantavirus genus. Using this panel, we sequenced complete viral genomes from bank vole lung tissue, human plasma samples, and cell-cultured reference strains. Analysis revealed that Swedish PUUV isolates belong to the Northern Scandinavian lineage, with nucleotide diversity ranging from 2.8 % to 3.7 % among them. Notably, no significant genotypic differences were observed between the viral sequences from reservoirs and human cases except in the nonstructural protein. Despite the high endemicity of PUUV in Northern Sweden, these are the first complete Swedish wild-type PUUV genomes and substantially increase our understanding of PUUV evolution and epidemiology. The panel's sensitivity enables genomic sequencing of human samples with viral RNA levels reflecting the natural progression of infection and underscores our panel's diagnostic value, and could help to uncover novel Orthohantavirus transmission routes.


Asunto(s)
Arvicolinae , Genoma Viral , Fiebre Hemorrágica con Síndrome Renal , Secuenciación de Nucleótidos de Alto Rendimiento , Virus Puumala , Arvicolinae/virología , Animales , Humanos , Virus Puumala/genética , Virus Puumala/aislamiento & purificación , Virus Puumala/clasificación , Fiebre Hemorrágica con Síndrome Renal/virología , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Orthohantavirus/genética , Orthohantavirus/aislamiento & purificación , Orthohantavirus/clasificación , Filogenia , Suecia/epidemiología , ARN Viral/genética
3.
Emerg Infect Dis ; 30(4): 732-737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526134

RESUMEN

In 2018, a local case of nephropathia epidemica was reported in Scania, southern Sweden, more than 500 km south of the previously known presence of human hantavirus infections in Sweden. Another case emerged in the same area in 2020. To investigate the zoonotic origin of those cases, we trapped rodents in Ballingslöv, Norra Sandby, and Sörby in southern Sweden during 2020‒2021. We found Puumala virus (PUUV) in lung tissues from 9 of 74 Myodes glareolus bank voles by screening tissues using a hantavirus pan-large segment reverse transcription PCR. Genetic analysis revealed that the PUUV strains were distinct from those found in northern Sweden and Denmark and belonged to the Finnish PUUV lineage. Our findings suggest an introduction of PUUV from Finland or Karelia, causing the human PUUV infections in Scania. This discovery emphasizes the need to understand the evolution, cross-species transmission, and disease outcomes of this newly found PUUV variant.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Virus Puumala/genética , Suecia/epidemiología , Arvicolinae
4.
Vopr Virusol ; 68(4): 283-290, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-38156585

RESUMEN

INTRODUCTION: Puumala virus (family Hantaviridae, genus Orthohantavirus) is distributed in most regions of the European part of Russia. However, information about its genetic variants circulating on the territory of the Central Federal District is extremely scarce. MATERIALS AND METHODS: Rodents' tissue samples were tested after reverse transcription by PCR for the presence of hantaviral RNA. The amplified fragments of the L segment were sequenced by the Sanger method. For two samples, sequences of all three segments were obtained using the NGS method. Phylogenetic trees were built in the MEGA-X software. RESULTS: Puumala virus was found in six samples. Based on the phylogenetic analysis of sequences of three segments, the obtained genetic variants belong to the sublineage previously designated as W-RUS. CONCLUSION: A genetic variant of the Puumala virus, belonging to the subline W-RUS, circulates on the territory of the Volokolamsk district of Moscow region.


Asunto(s)
Orthohantavirus , Virus Puumala , Animales , Virus Puumala/genética , Filogenia , Orthohantavirus/genética , Moscú/epidemiología , Arvicolinae
5.
J Gen Virol ; 104(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801017

RESUMEN

Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.


Asunto(s)
Orthohantavirus , Virus Puumala , Humanos , Virus Puumala/genética , Virus Puumala/química , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Epítopos de Linfocito B , Aminoácidos , Anticuerpos Antivirales , Pruebas de Neutralización
6.
Infect Dis Now ; 53(8): 104767, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562571

RESUMEN

OBJECTIVE: A large and unprecedented outbreak of an attenuated form of hemorrhagic fever with renal syndrome called nephropathia epidemica (NE) and caused by Puumala virus (PUUV) occurred in 2021 in the southern Jura Mountains (France) leading to numerous hospitalizations. The aim of this study was to investigate the circulation of PUUV in its animal reservoir at the time of this outbreak. METHODS: We conjointly surveyed bank vole relative abundance, small mammal community composition, and PUUV circulation in bank voles (seroprevalence and genetic diversity) in the Jura NE epidemic area, between 2020 and 2022. RESULTS: Trapping results showed a higher relative abundance of bank voles in 2021 compared to 2020 and 2022. Extremely high levels of PUUV seroprevalence in bank voles were found at the time of the human NE epidemic with seropositive animals trapped in almost all trap lines as of spring 2021. Genetic analyses of PUUV (S segment) gathered in 2021 at two sampling sites revealed a strong clustering of these strains within the "Jura" clade. No significant genetic variation was detected compared to what was already known to be circulating in the Jura region. CONCLUSION: These results underline a need for enhanced monitoring of PUUV circulation in host reservoir populations in NE endemic areas. This would enable the relevant actors to better inform and sensitize the public on this zoonotic risk, and to implement prevention strategies in collaboration with physicians.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Virus Puumala/genética , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/genética , Estudios Seroepidemiológicos , Brotes de Enfermedades , Arvicolinae , Francia/epidemiología
7.
J Clin Microbiol ; 61(8): e0037223, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37486218

RESUMEN

Molecular detection of Orthohantavirus puumalaense (PUUV) RNA during the course of the disease has been studied in blood of patients in Sweden and Slovenia. The use of urine has been poorly investigated. The aims of this work were to study PUUV RNA detection in plasma from a cohort of patients in France where a different PUUV lineage circulates and to assess the use of urine instead of plasma. Matched plasma and urine samples were collected daily from hospitalized patients presenting with fever, pain, and thrombocytopenia within the last 8 days and testing positive for IgM and IgG against PUUV in serum collected at inclusion and/or approximately 1 month after release. RNA was extracted from samples, and PUUV RNA was detected using real-time reverse transcription-PCR for plasma and urine samples. Sixty-seven patients presented a serologically confirmed acute hantavirus infection. At inclusion, PUUV RNA was detected in plasma from 55 of 62 patients (88.7%) sampled within the first week after disease onset, whereas it was detected in 15 of 60 (25.0%) of matched urine samples. It was then detected from 33 (71.7%) and 2 (4.4%) of 46 patients discharged from the hospital during the second week after disease onset, in plasma and urine, respectively. When PUUV RNA was detected in urine it was also detected in plasma, and not vice versa. Detection of PUUV RNA in plasma from hospitalized patients in France is similar to that observed in Sweden and Slovenia. Urine is not an appropriate sample for this detection.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Puumala , Humanos , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Virus Puumala/genética , ARN Viral/genética , Francia/epidemiología , Anticuerpos Antivirales
8.
Emerg Infect Dis ; 29(7): 1420-1424, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347809

RESUMEN

We analyzed Puumala virus (PUUV) sequences collected from bank voles from different regions of Russia. Phylogenetic analysis revealed PUUV reassortments in areas with the highest hemorrhagic fever with renal syndrome incidence, indicating reassortment might contribute to pathogenic properties of PUUV. Continued surveillance is needed to assess PUUV pathogenicity in Russia.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Virus Puumala/genética , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Filogenia , Arvicolinae , Federación de Rusia/epidemiología
9.
Viruses ; 15(3)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36992321

RESUMEN

In Europe, most cases of human hantavirus disease are caused by Puumala orthohantavirus (PUUV) transmitted by bank voles (Clethrionomys glareolus, syn. Myodes glareolus), in which PUUV causes inconspicuous infection. Little is known about tropism and endoparasite coinfections in PUUV-infected reservoir and spillover-infected rodents. Here, we characterized PUUV tropism, pathological changes and endoparasite coinfections. The voles and some non-reservoir rodents were examined histologically, immunohistochemically, by in situ hybridization, indirect IgG enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. PUUV RNA and anti-PUUV antibodies were detected simultaneously in a large proportion of the bank voles, indicating persistent infection. Although PUUV RNA was not detected in non-reservoir rodents, the detection of PUUV-reactive antibodies suggests virus contact. No specific gross and histological findings were detected in the infected bank voles. A broad organ tropism of PUUV was observed: kidney and stomach were most frequently infected. Remarkably, PUUV was detected in cells lacking the typical secretory capacity, which may contribute to the maintenance of virus persistence. PUUV-infected wild bank voles were found to be frequently coinfected with Hepatozoon spp. and Sarcocystis (Frenkelia) spp., possibly causing immune modulation that may influence susceptibility to PUUV infection or vice versa. The results are a prerequisite for a deeper understanding of virus-host interactions in natural hantavirus reservoirs.


Asunto(s)
Coinfección , Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Coinfección/veterinaria , Virus Puumala/genética , Arvicolinae , ARN
10.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674534

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in the Republic of Tatarstan (RT), Russian Federation. Puumala orthohantavirus (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in the RT. In this study, we sought to demonstrate the similarity of the PUUV genetic sequences detected in HFRS case patients and bank vole samples previously collected in some areas of the RT. Furthermore, we intended to identify the reassortant PUUV genomes and locate a potential site for their emergence. During 2019 outbreaks, the PUUV genome sequences of the S and M segments from 42 HFRS cases were analysed and compared with the corresponding sequences from bank voles previously trapped in the RT. Most of the PUUV strains from HFRS patients turned out to be closely related to those isolated from bank voles captured near the site of the human infection. We also found possible reassortant PUUV genomes in five patients while they were absent in bank voles. The location of the corresponding HFRS infection sites suggests that reassortant PUUV genomes could emerge in the bank voles that inhabit the forests on the watershed between the Kazanka River and Myosha River. These findings could facilitate the search for the naturally occurring reassortants of PUUV in bank vole populations.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Virus Puumala/genética , Zoonosis , Bosques , Arvicolinae
11.
PLoS Negl Trop Dis ; 16(10): e0010844, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36223391

RESUMEN

Orthohantaviruses are rodent-borne emerging viruses that may cause severe diseases in humans but no apparent pathology in their small mammal reservoirs. However, the mechanisms leading to tolerance or pathogenicity in humans and persistence in rodent reservoirs are poorly understood, as is the manner in which they spread within and between organisms. Here, we used a range of cellular and molecular approaches to investigate the interactions of three different orthohantaviruses-Puumala virus (PUUV), responsible for a mild to moderate form of hemorrhagic fever with renal syndrome in humans, Tula virus (TULV) with low pathogenicity, and non-pathogenic Prospect Hill virus (PHV)-with human and rodent host cell lines. Besides the fact that cell susceptibility to virus infection was shown to depend on the cell type and virus strain, the three orthohantaviruses were able to infect Vero E6 and HuH7 human cells, but only the former secreted infectious particles. In cells derived from PUUV reservoir, the bank vole (Myodes glareolus), PUUV achieved a complete viral cycle, while TULV did not enter the cells and PHV infected them but did not produce infectious particles, reflecting differences in host specificity. A search for mature virions by electron microscopy (EM) revealed that TULV assembly occurred in part at the plasma membrane, whereas PHV particles were trapped in autophagic vacuoles in cells of the heterologous rodent host. We described differential interactions of orthohantaviruses with cellular factors, as supported by the cellular distribution of viral nucleocapsid protein with cell compartments, and proteomics identification of cellular partners. Our results also showed that interferon (IFN) dependent gene expression was regulated in a cell and virus species dependent manner. Overall, our study highlighted the complexity of the host-virus relationship and demonstrated that orthohantaviruses are restricted at different levels of the viral cycle. In addition, the study opens new avenues to further investigate how these viruses differ in their interactions with cells to evade innate immunity and how it depends on tissue type and host species.


Asunto(s)
Orthohantavirus , Virus Puumala , Virus ARN , Virus , Humanos , Animales , Roedores , Orthohantavirus/genética , Virus Puumala/genética , Arvicolinae , Proteínas de la Nucleocápside/genética , Interferones
12.
Infect Dis (Lond) ; 54(10): 766-772, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35713235

RESUMEN

BACKGROUND: Orthohantaviruses are rodent-borne emerging viruses that cause haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome in America. Transmission between humans have been reported and the case-fatality rate ranges from 0.4% to 40% depending on virus strain. There is no specific and efficient treatment for patients with severe HFRS. Here, we characterised a fatal case of HFRS and sequenced the causing Puumala orthohantavirus (PUUV). METHODS: PUUV RNA and virus specific neutralising antibodies were quantified in plasma samples from the fatal case and other patients with non-fatal PUUV infection. To investigate if the causing PUUV strain was different from previously known strains, Sanger sequencing was performed directly from the patient's plasma. Biopsies obtained from autopsy were stained for immunohistochemistry. RESULTS: The patient had approximately tenfold lower levels of PUUV neutralising antibodies and twice higher viral load than was normally seen for patients with less severe PUUV infection. We could demonstrate unique mutations in the S and M segments of the virus that could have had an impact on the severity of infection. Due to the severe course of infection, the patient was treated with the bradykinin receptor inhibitor icatibant to reduce bradykinin-mediated vessel permeability and maintain vascular circulation. CONCLUSIONS: Our data suggest that bradykinin receptor inhibitor may not be highly efficient to treat patients that are at an advanced stage of HFRS. Low neutralising antibodies and high viral load at admission to the hospital were associated with the fatal outcome and may be useful for future predictions of disease outcome.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Puumala , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antagonistas de los Receptores de Bradiquinina , Genómica , Orthohantavirus/genética , Humanos , Virus Puumala/genética
13.
Virus Res ; 318: 198830, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640779

RESUMEN

Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Puumala , Autofagia , Genotipo , Orthohantavirus/genética , Humanos , Proteínas de la Nucleocápside/genética , Virus Puumala/genética
14.
Infect Genet Evol ; 102: 105295, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35526822

RESUMEN

Haemorrhagic fever with renal syndrome (HFRS) is the most widespread natural-focal human disease in the Russian Federation. In this study, we report virological assessment of a fatal case of HFRS-PUUV (Puumala virus) in the Kursk Region. The infection caused severe multiorgan failure and the maximum viral load was detected in the tissue of the spleen. Viral sequences were obtained from the patient's autopsy material and lung tissues of bank voles captured in the region. These sequences formed a new clade in the PUUV phylogenetic tree, an outgroup to all known Russian (RUS) lineage sequences. On the other hand viruses collected in the Kursk Region grouped with the RUS lineage and are separated from all other PUUV linages. We propose to nominate this novel group as W-RUS as the identified viruses were collected near the western Russian boundary. The recombination signals between their ancestors and RUS lineage representatives from the Volga region were revealed. The strain Samara_94/CG/2005 suggestively emerged as the result of reassortment between the ancestors of W-RUS and DTK-Ufa-97.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Virus , Animales , Arvicolinae , Humanos , Filogenia , Virus Puumala/genética , Federación de Rusia
15.
PLoS Negl Trop Dis ; 15(12): e0010006, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871302

RESUMEN

BACKGROUND: Infections with the Puumala orthohantavirus (PUUV) in humans may cause hemorrhagic fever with renal syndrome (HFRS), known as nephropathia epidemica (NE), which is associated with acute renal failure in severe cases. In response to PUUV-infections, a subset of potent antiviral NKG2C+ NK cells expand, whose role in virus defence and pathogenesis of NE is unclear. NKG2C+ NK cell proliferation is mediated by binding of NKG2C/CD94 to HLA-E on infected cells. The proliferation and activation of NKG2C+ NK cells via the NKG2C/HLA-E axis is affected by different NKG2C (NKG2Cwt/del) and HLA-E (HLA-E*0101/0103) alleles, which naturally occur in the human host. Homozygous (NKG2Cdel/del) and heterozygous (NKG2Cwt/del) deletions of the NKG2C receptor results in an impaired NKG2C/CD94 mediated proliferation and activation of NKG2C+ cells. We therefore analyzed the PUUV-mediated NKG2C+ NK cell responses and the impact of different NKG2C and HLA-E alleles in NE patients. METHODOLOGY/PRINCIPAL FINDINGS: NKG2C+ NK cell expansion and effector functions in PUUV-infected cells were investigated using flow cytometry and it was shown that PUUV-infected endothelial cells led to a NKG2C/CD94 mediated NKG2C+ NK cell activation and expansion, dependent on the HLA-G-mediated upregulation of HLA-E. Furthermore, the NKG2Cdel and HLA-E*0101/0103 alleles were determined in 130 NE patients and 130 matched controls, and it was shown that in NE patients the NKG2Cwt/del allele was significantly overrepresented, compared to the NKG2Cwt/wt variant (p = 0.01). In addition, in vitro analysis revealed that NKG2Cwt/del NK cells exhibited on overall a lower proliferation (p = 0.002) and lower IFNγ expression (p = 0.004) than NKG2Cwt/wt NK cells. CONCLUSIONS/SIGNIFICANCE: Our results corroborate the substantial impact of the NKG2C/HLA-E axis on PUUV-specific NK cell responses. A weak NKG2C+ NK cell response, as reflected by NKG2Cwt/del variant, may be associated with a higher risk for a severe hantavirus infections.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal/inmunología , Fiebre Hemorrágica con Síndrome Renal/virología , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Virus Puumala/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/virología , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/inmunología , Virus Puumala/genética , Adulto Joven
16.
Viruses ; 13(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34452504

RESUMEN

In Europe, two species of hantaviruses, Puumala orthohantavirus (PUUV) and Dobrava orthohantavirus (DOBV), cause hemorrhagic fever with renal syndrome in humans. The rodent reservoirs for these viruses are common throughout Ukraine, and hence, the goal of this study was to identify the species and strains of hantaviruses circulating in this region. We conducted surveillance of small rodent populations in a rural region in northwestern Ukraine approximately 30 km from Poland. From the 424 small mammals captured, we identified nine species, of which the most abundant were Myodes glareolus, the bank vole (45%); Apodemus flavicollis, the yellow-necked mouse (29%); and Apodemus agrarius, the striped field mouse (14.6%) Using an indirect immunofluorescence assay, 15.7%, 20.5%, and 33.9% of the sera from M. glareolus, A. glareolus, and A. flavicollis were positive for hantaviral antibodies, respectively. Additionally, we detected antibodies to the hantaviral antigen in one Microtus arvalis, one Mus musculus, and one Sorex minutus. We screened the lung tissue for hantaviral RNA using next-generation sequencing and identified PUUV sequences in 25 small mammals, including 23 M. glareolus, 1 M. musculus, and 1 A. flavicollis, but we were unable to detect DOBV sequences in any of our A. agrarius specimens. The percent identity matrix and Bayesian phylogenetic analyses of the S-segment of PUUV from 14 M. glareolus lungs suggest the highest similarity (92-95% nucleotide or 99-100% amino acid) with the Latvian lineage. This new genetic information will contribute to future molecular surveillance of human cases in Ukraine.


Asunto(s)
Reservorios de Enfermedades/veterinaria , Orthohantavirus/aislamiento & purificación , Virus Puumala/aislamiento & purificación , Roedores/virología , Animales , Anticuerpos Antivirales/sangre , Reservorios de Enfermedades/clasificación , Reservorios de Enfermedades/virología , Orthohantavirus/clasificación , Orthohantavirus/genética , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/transmisión , Infecciones por Hantavirus/virología , Humanos , Ratones , Filogenia , Prevalencia , Virus Puumala/clasificación , Virus Puumala/genética , Roedores/sangre , Roedores/clasificación , Ucrania/epidemiología
17.
Viruses ; 13(4)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918083

RESUMEN

Puumala orthohantavirus (PUUV) has a wide distribution throughout Europe. Distinctive temporal patterns of spillover into the human population are related to population dynamics of the reservoir host, the bank vole (Clethrionomys glareolus). As the rodent host is tied to specific habitats with small individual ranges, PUUV genetic diversity is also highly correlated with geographic distance. Using sequenced portions of viral S and M segments, we determined whether geographic clusters were supported. Human cases of PUUV infections are concentrated in southeastern Austria. We detected four distinct genotypes: two genotypes of the Alpe-Adria (ALAD) lineage typically associated with southeast Europe, and two sublineages of the Central Europe (CE) lineage. One cluster of CE genotypes represents a phylogenetically distinct sublineage compared to previously reported CE clades, and extends the boundary of the CE lineage further south than previously reported.


Asunto(s)
Variación Genética , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/virología , Virus Puumala/clasificación , Virus Puumala/genética , Roedores/virología , Animales , Austria/epidemiología , Reservorios de Enfermedades/virología , Genotipo , Humanos , Filogenia , Filogeografía , ARN Viral/genética
18.
Emerg Infect Dis ; 27(2): 658-660, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33496646

RESUMEN

We report 3 cases of Puumala virus infection in a family in Switzerland in January 2019. Clinical manifestations of the infection ranged from mild influenza-like illness to fatal disease. This cluster illustrates the wide range of clinical manifestations of Old World hantavirus infections and the challenge of diagnosing travel-related hemorrhagic fevers.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Puumala , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Humanos , Virus Puumala/genética , Suiza/epidemiología , Viaje , Enfermedad Relacionada con los Viajes
19.
Viruses ; 14(1)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35062248

RESUMEN

Annually, over 10,000 cases of hemorrhagic fever with renal syndrome (HFRS) are diagnosed in Europe. Puumala hantavirus (PUUV) causes most of the European HFRS cases. PUUV causes usually a relatively mild disease, which is rarely fatal. However, the severity of the infection varies greatly, and factors affecting the severity are mostly unrevealed. Host genes are known to have an effect. The typical clinical features in PUUV infection include acute kidney injury, thrombocytopenia, and increased vascular permeability. The primary target of hantavirus is the endothelium of the vessels of different organs. Although PUUV does not cause direct cytopathology of the endothelial cells, remarkable changes in both the barrier function of the endothelium and the function of the infected endothelial cells occur. Host immune or inflammatory mechanisms are probably important in the development of the capillary leakage. Several immunoinflammatory biomarkers have been studied in the context of assessing the severity of HFRS caused by PUUV. Most of them are not used in clinical practice, but the increasing knowledge about the biomarkers has elucidated the pathogenesis of PUUV infection.


Asunto(s)
Biomarcadores , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Virus Puumala , Lesión Renal Aguda/virología , Anticuerpos Antivirales , Citocinas/metabolismo , Células Endoteliales , Europa (Continente) , Orthohantavirus/genética , Infecciones por Hantavirus/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/virología , Humanos , Virus Puumala/genética , Trombocitopenia
20.
Virus Genes ; 56(4): 448-460, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32328924

RESUMEN

Orthohantaviruses are re-emerging rodent-borne pathogens distributed all over the world. Here, we report the isolation of a Puumala orthohantavirus (PUUV) strain from bank voles caught in a highly endemic region around the city Osnabrück, north-west Germany. Coding and non-coding sequences of all three segments (S, M, and L) were determined from original lung tissue, after isolation and after additional passaging in VeroE6 cells and a bank vole-derived kidney cell line. Different single amino acid substitutions were observed in the RNA-dependent RNA polymerase (RdRP) of the two stable PUUV isolates. The PUUV strain from VeroE6 cells showed a lower titer when propagated on bank vole cells compared to VeroE6 cells. Additionally, glycoprotein precursor (GPC)-derived virus-like particles of a German PUUV sequence allowed the generation of monoclonal antibodies that allowed the reliable detection of the isolated PUUV strain in the immunofluorescence assay. In conclusion, this is the first isolation of a PUUV strain from Central Europe and the generation of glycoprotein-specific monoclonal antibodies for this PUUV isolate. The obtained virus isolate and GPC-specific antibodies are instrumental tools for future reservoir host studies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Orthohepadnavirus/genética , Virus Puumala/genética , Animales , Anticuerpos Antivirales/genética , Alemania , Humanos , Orthohepadnavirus/inmunología , Orthohepadnavirus/aislamiento & purificación , Virus Puumala/inmunología , Virus Puumala/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA