Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Vet Q ; 44(1): 1-22, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39233648

RESUMEN

Lumpy skin disease (LSD) is an economically significant, emerging viral disease of Cattle and Buffaloes. This study aimed to investigate the causes of high mortality in a recent LSD epidemic in India. We examined 1618 animals across seventy outbreaks and conducted post-mortem on 48 cattle out of 513 clinically suspected LSD cases. The morbidity, mortality and case fatality rates recorded were 31.70%, 2.97 and 9.37% respectively. Disease stages were categorized as early (20.81%), mid (42.02%), and late (37.17%) and the distribution of skin lesions was classified as mild (34.14%), moderate (39.39%), and severe (26.47%). Post-mortem findings revealed systemic infection with necrotic and ulcerative nodules on multiple internal organs. Histologically, necrotizing vasculitis and mononuclear cell infiltration with intracytoplasmic inclusions were observed in various organs. The highest viral load was found in skin nodules/scabs, trachea, tongue, and lymph nodes. The viral load was significantly higher in mid- and late-stages of skin nodules and internal organs; whereas, blood from early-stage showed high viral load. The expression of Th1-type and Th2-type cytokines varied significantly across different stages of the disease. The downregulation of the apoptotic intrinsic and upregulation of the extrinsic pathway genes, suggesting that the latter plays a role in LSDV infection. Genetic analysis revealed that the LSD virus (LSDV) isolates were derived from a Kenyan ancestral strain with unique nucleotide changes in RPO30 and P32 gene. In conclusion, the high mortality in the recent Indian LSD epidemic can be attributed to a newly identified, highly virulent strain of LSDV causing systemic infection.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/patología , Virus de la Dermatosis Nodular Contagiosa/genética , Bovinos , India/epidemiología , Epidemiología Molecular , Epidemias/veterinaria , Carga Viral/veterinaria , Brotes de Enfermedades/veterinaria , Femenino , Masculino
2.
Sci Rep ; 14(1): 20460, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227598

RESUMEN

Lumpy skin disease (LSD) is one of the most economically significant viral diseases of cattle caused by the Lumpy Skin Disease Virus (LSDV), classified as a member of the genus Capripoxvirus and belongs to the family Poxviridae. Nodular skin samples were collected from clinically sick cattle in the districts of Amuru and Wara Jarso Ethiopia to isolate LSD virus. The virus was isolated using primary lamb testis and kidney cells. The isolated LSDV was infected into a healthy calf while maintaining the necessary biosecurity measures to generate skin lesions and to assess disease progression using postmortem examinations. On the fourth day after virus inoculation, the calf developed typical LSD skin nodules with increased rectal temperature, which lasted until the 12th day, when they began to decrease. Viral shedding was detected in nasal, oral, and conjunctival swabs from 6 to 14 days after infection using real-time PCR. Post-mortem tissue specimens tested positive for LSD virus using real-time PCR and virus isolation. This study showed that LSDV were responsible for the LSD outbreaks, and the appearance of typical skin nodules accompanied by fever (> 39.5 °C) defined the virus's virulent status. The experimental infection with the isolated infectious LSDV could serve as a platform for future vaccine evaluation study using an LSDV challenge model.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Virus de la Dermatosis Nodular Contagiosa/genética , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/patología , Bovinos , Piel/virología , Piel/patología , Esparcimiento de Virus , Etiopía , Ovinos , Masculino
3.
Open Vet J ; 14(7): 1701-1707, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39175973

RESUMEN

Background: In 2021, Vietnam experienced an outbreak of Lumpy skin disease (LSD), which infected 207,687 cattle and buffaloes, as officially reported, and resulted in the culling of 29,182 animals. Aim: In this study, samples from cattle that died and showed typical signs of LSD in the Ha Tinh province of Vietnam were confirmed by three World Organization for Animal Health (WOAH)-recommended methods and further studied to compare the Vietnam and China reference strains to the new clinical cases. Methods: Three methods recommended by WOAH for agent detection (PCR, virus isolation, and transmission electron microscopy) were used to confirm this clinical LSD case. The sequence analysis of three well-known markers (P32, RPO30, and GPCR genes) has been utilized in Vietnam to understand this circulating pathogen better. Results: Our findings showed that the CX01 LSDV strain is 100% identical to the Vietnam reference strain HL01 and China reference strains based on P32 and RPO30 genes. Interestingly, analysis of the nucleotide sequence of the GPCR gene showed that the CX01 strain belongs to the same cluster as the reference strains, but it has branches different from those of both the HL01 and China LSDV strains. The nucleotide identification between the CX01 strain and these reference virus strains ranked 99.65%-99.91%, suggesting that it is a new variant of LSDV. Conclusion: This finding is new and indicates that at least two variants of the LSD virus were circulating in Vietnam based on analysis of the GPCR gene. Additionally, these results suggest that the sequence analysis of the GPCR gene is a great tool for subgrouping LSDV circulating in Vietnam.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Vietnam/epidemiología , Animales , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/epidemiología , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Bovinos , Filogenia , Receptores Acoplados a Proteínas G/genética , Brotes de Enfermedades/veterinaria , Análisis de Secuencia de ADN/veterinaria
4.
J Med Virol ; 96(8): e29829, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109810

RESUMEN

Lumpy skin disease virus (LSDV), a double-stranded DNA virus from the Capripoxvirus genus, primarily affects Bos indicus, Bos taurus breeds, and water buffalo. Arthropod vectors, including mosquitoes and biting flies, are the main LSDV transmitters. Although LSDV is not zoonotic, this study unexpectedly detected LSDV reads in the upper respiratory tract microbiome of humans from rural and urban areas in Maharashtra, India. Nasopharyngeal and oropharyngeal swab samples collected for SARS-CoV-2 surveillance underwent whole-genome metagenomics sequencing, revealing LSDV reads in 25% of samples. Split kmer analysis provided insights into sample relatedness despite the low coverage of LSDV reads with the reference genome. Our findings, which include the detection of LSDV contigs aligning to specific locations on the reference genome, suggest a common source for LSDV reads, potentially shared water sources, or milk/milk products. Further investigation is needed to ascertain the mode of transmission and reason for the detection of LSDV reads in human upper respiratory tract.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , Metagenómica , Microbiota , Humanos , Microbiota/genética , Metagenómica/métodos , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/clasificación , Orofaringe/virología , Orofaringe/microbiología , Animales , India , Genoma Viral/genética , Nasofaringe/virología , Nasofaringe/microbiología , Sistema Respiratorio/microbiología , Sistema Respiratorio/virología , Masculino , Secuenciación Completa del Genoma , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/clasificación , Femenino , Adulto , COVID-19/diagnóstico , COVID-19/virología , Dermatosis Nodular Contagiosa/virología
5.
Viruses ; 16(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39066289

RESUMEN

Sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV) are the three members of the genus Capripoxvirus within the Poxviridae family and are the etiologic agents of sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD), respectively. LSD, GTP, and SPP are endemic in Africa and Asia, causing severe disease outbreaks with significant economic losses in livestock. Incursions of SPP and LSD have occurred in Europe. Vaccination with live attenuated homologous and heterologous viruses are routinely implemented to control these diseases. Using the gold standard virus neutralization test, we studied the ability of homologous and heterologous sera to neutralize the SPPV and LSDV. We found that LSD and SPP sera effectively neutralize their homologous viruses, and GTP sera can neutralize SPPV. However, while LSD sera effectively neutralizes SPPV, SPP and GTP sera cannot neutralize the LSDV to the same extent. We discuss the implications of these observations in disease assay methodology and heterologous vaccine efficacy.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Capripoxvirus , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Pruebas de Neutralización , Infecciones por Poxviridae , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Virus de la Dermatosis Nodular Contagiosa/inmunología , Virus de la Dermatosis Nodular Contagiosa/genética , Capripoxvirus/inmunología , Capripoxvirus/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Ovinos , Dermatosis Nodular Contagiosa/prevención & control , Dermatosis Nodular Contagiosa/inmunología , Dermatosis Nodular Contagiosa/virología , Infecciones por Poxviridae/veterinaria , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/virología , Enfermedades de las Ovejas/virología , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/prevención & control , Cabras
6.
J Virol Methods ; 329: 114998, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059503

RESUMEN

Lumpy skin disease (LSD), caused by the lumpy skin disease virus of the genus Capripoxvirus, is rapidly emerging across most countries in Asia. Recently, LSD has been linked to very high morbidity and mortality rates. Until 2019, India remained free of LSD, resulting in a lack of locally developed diagnostic kits, biologicals, and other tools necessary for managing the disease in a country with such a large livestock population. Therefore, this study aimed to design and validate an indigenous and cost-effective in-house ELISA for large-scale screening of cattle samples for antibodies to LSDV. The viral major open reading frames ORF 095 and ORF 103 encoding virion core proteins were expressed in a prokaryotic system and the recombinant antigen cocktail was used for optimization and validation of an indirect ELISA (iELISA). The calculated relative diagnostic sensitivity and diagnostic specificity of the iELISA were 96.6 % and 95.1 %, respectively at the cut-off percent positivity (PP≥50 %). The in-house designed double-antigen iELISA was found effective to investigate the seroprevalence of LSDV in various geographical regions of India.


Asunto(s)
Anticuerpos Antivirales , Antígenos Virales , Ensayo de Inmunoadsorción Enzimática , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Sensibilidad y Especificidad , India/epidemiología , Ensayo de Inmunoadsorción Enzimática/métodos , Dermatosis Nodular Contagiosa/diagnóstico , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/epidemiología , Animales , Virus de la Dermatosis Nodular Contagiosa/inmunología , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Bovinos , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Estudios Seroepidemiológicos
7.
Anal Chem ; 96(27): 10927-10934, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934225

RESUMEN

Lumpy skin disease virus (LSDV) is a severe and highly contagious form of cowpox. As LSDV continues to mutate and there is no vaccine and treatment in nonendemic countries, early detection of LSDV becomes an important basis for epidemic prevention and control, especially for detection of conserved sequences. A new label-free and sensitive fluorescence method was developed based on a light-up RNA aptamer for detecting LSDV. The method integrated recombinase polymerase amplification (RPA), CRISPR/Cas12a, 10-23 DNAzyme, and Baby Spinach RNA aptamer for triple cascade signal amplification. Based on highly sensitive and specific RPA and CRISPR/Cas12a, DNAzyme achieved a third signal amplification. Additionally, the Baby Spinach RNA aptamer had stronger fluorescence signals and higher quantum yields. The label-free method had ultrahigh sensitivity with the actual detection limit as 1.29 copies·µL-1. The method was 100-fold more sensitive compared to RPA with Cas12a. Moreover, it had no cross-reactivity with viruses belonging to the Capripoxvirus, such as sheep pox virus and goat pox virus with genetic homology as 97%. Furthermore, the method displayed 100% accuracy in 50 actual samples. Therefore, the method based on RPA, Cas12a, and 10-23 DNAzyme had advantages in LSDV detection and provided a new solution for LSD prevention and control.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Virus de la Dermatosis Nodular Contagiosa , ADN Catalítico/química , ADN Catalítico/metabolismo , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Relación Señal-Ruido , Límite de Detección , Animales , Sistemas CRISPR-Cas/genética
8.
Virology ; 596: 110123, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805805

RESUMEN

Lumpy Skin Disease (LSD), a poxvirus disease affecting cattle, emerged in India in 2019 and intensified in 2022, resulting in significant economic losses for dairy farmers. There was unusual shift in mortality and morbidity patterns during the second wave. A comprehensive genetic study conducted, analyzing samples from 2019 to 2022 revealed circulation of two distinct subclades (subclade 1.2a and 1.2b) in India, with the latter showing a different pattern in morbidity and mortality. Notably, the Ankyrin repeats gene-based analysis could differentiate animals with varying clinical scores. Genetic variations were significant, with unique deletions identified, including a 12-nucleotide deletion in the GPCR gene in virus isolates collected during 2022 outbreaks, not reported earlier in Indian LSDV strains. A crucial finding was a significant 95-nucleotide deletion in the Functional Resolution Sequence (FRS) repeats of LSDV genomes from 2022 outbreaks, absent in 2019 samples. These deletions may have influenced the virus's virulence in India.


Asunto(s)
Genoma Viral , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Filogenia , India/epidemiología , Animales , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/epidemiología , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/patogenicidad , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Virulencia/genética , Bovinos , Brotes de Enfermedades/veterinaria , Variación Genética , Secuenciación Completa del Genoma
9.
Viruses ; 16(5)2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793643

RESUMEN

Lumpy skin disease is one of the fast-spreading viral diseases of cattle and buffalo that can potentially cause severe economic impact. Lesotho experienced LSD for the first time in 1947 and episodes of outbreaks occurred throughout the decades. In this study, eighteen specimens were collected from LSD-clinically diseased cattle between 2020 and 2022 from Mafeteng, Leribe, Maseru, Berea, and Mohales' Hoek districts of Lesotho. A total of 11 DNA samples were analyzed by PCR and sequencing of the extracellular enveloped virus (EEV) glycoprotein, G-protein-coupled chemokine receptor (GPCR), 30 kDa RNA polymerase subunit (RPO30), and B22R genes. All nucleotide sequences of the above-mentioned genes confirmed that the PCR amplicons of clinical samples are truly LSDV, as they were identical to respective LSDV isolates on the NCBI GenBank. Two of the elevem samples were further characterized by whole-genome sequencing. The analysis, based on both CaPV marker genes and complete genome sequences, revealed that the LSDV isolates from Lesotho cluster with the NW-like LSDVs, which includes the commonly circulating LSDV field isolates from Africa, the Middle East, the Balkans, Turkey, and Eastern Europe.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Filogenia , Animales , Bovinos , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/epidemiología , Lesotho/epidemiología , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Virus de la Dermatosis Nodular Contagiosa/clasificación , Secuenciación Completa del Genoma , Genoma Viral
10.
Vet Microbiol ; 294: 110122, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772074

RESUMEN

Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia, including China. Genetic manipulation of the LSDV is essential for the elucidation of the pathogenic mechanism and biological function of the LSDV-encoded protein. In this study, we established a platform for the Cre-loxP recombination system under a modified early-late H5 promoter of the VACV for quick construction of the recombinant LSDV virus. The recombinant virus, LSDV-EGFP-ΔTK, was purified and obtained using serial limited dilution and picking the single cells methods. Using the lentiviral package system, a Cre recombinase enzyme stable expression MDBK cell line was established to supply the Cre recombinase for the reporter gene excision. A genetically stable, safe TK gene-deleted LSDV (LSDV-ΔTK) was constructed using homologous recombination and the Cre-loxP system. It was purified using limited dilution in the MDBK-Cre cell line. Establishing the Cre-loxP recombination system will enable sequential deletion of the interested genes from the LSDV genome and genetic manipulation of the LSDV genome, providing technical support and a platform for developing the attenuated LSDV vaccine.


Asunto(s)
Integrasas , Virus de la Dermatosis Nodular Contagiosa , Recombinación Genética , Integrasas/genética , Animales , Virus de la Dermatosis Nodular Contagiosa/genética , Línea Celular , Recombinación Homóloga , Vectores Genéticos/genética
11.
Vet Ital ; 60(1)2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602499

RESUMEN

In October 2020, the first outbreaks of lumpy skin disease (LSD) in Lang Son Province, Vietnam were reported by our laboratory. The disease had rapidly spread to the South, and it was reported in 55 of 63 provinces and cities of Vietnam by the end of 2021. The most economic loss caused by this disease occurred in the north-central region in 2021 where approximately 46,788 LSD virus (LSDV) infected cattle and buffaloes have been reported and 8,976 animals have been culled. However, the information on this pathogen circulating in this region is missing. Here, we describe the molecular characterization of LSDV circulating in north-central Vietnam in 2021 and early 2022. In total, 155 LSDV samples were collected during this period and three of these samples from each province were further characterized by Sanger sequencing analysis based on three key maker genes (GPCR, RPO30, and p32). Sequence comparison and phylogenetic analysis based on GPCR, RPO30, and p32 genes indicated that LSDV strains circulating in north-central Vietnam are closely related to previously reported strains in Vietnam regions which bordered China and all LSDV strains were 100% identical. These results show the importance of continuous monitoring and characterization of circulating LSDV strains and are important for vaccine development for the control and eradication of LSD in Vietnam.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , Filogenia , Vietnam/epidemiología , Búfalos , Brotes de Enfermedades/veterinaria
12.
Arch Microbiol ; 206(5): 210, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592503

RESUMEN

Lumpy skin disease (LSD) is a highly infectious and economically devastating viral disease of cattle. It is caused by Lumpy Skin Disease Virus (LSDV) belonging to the genus Capripoxvirus and family Poxviridae. The origin of lumpy skin disease has been traced to Zambia, (an African nation) in Southern part during the year 1929. The first reported case of LSD besides Africa was from Israel, a Middle Eastern nation, thus proving inter-continental spread. Subsequently, the disease entered Middle East, Eastern Europe and Asia with numerous outbreaks in the recent years. LSD has emerged as a significant concern in the Indian sub-continent, due to outbreaks reported in countries such as Bangladesh, India, China in 2019. In the following years, other South and East Asian countries like Taipei, Nepal, Sri Lanka, Myanmar, Bhutan, Vietnam, Hong Kong, Thailand, Malaysia, Laos, Cambodia, Pakistan, Indonesia and Singapore also faced severe outbreaks. At present, LSD is considered to be an emerging disease in the Indian sub-continent due to the recent status of disease. Considering the global scenario, LSDV is changing its transmission dynamics as evidenced by a shift in its epidemiology. As a result of high morbidity and mortality rate among cattle, the current outbreaks have been a major cause of socio-economic catastrophe. This contagious viral disease has eminent repercussions as the estimated monetary damage incurred is quite high. Despite having networked surveillance and comprehensive databases, the recurring outbreaks have raised major concern among researchers. Therefore, this review offers brief insights into the emergence of LSDV by amalgamating the newest literature related to its biology, transmission, clinico-pathology, epidemiology, prevention strategies, and economic consequences. Additionally, we have also provided the epidemiological insights of the recent outbreaks with detailed state wise studies.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Bovinos , Animales , Virus de la Dermatosis Nodular Contagiosa/genética , Dermatosis Nodular Contagiosa/epidemiología , Brotes de Enfermedades/veterinaria , China , India/epidemiología
13.
Viruses ; 16(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38675899

RESUMEN

Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.


Asunto(s)
Genoma Viral , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Filogenia , Secuenciación Completa del Genoma , Virus de la Dermatosis Nodular Contagiosa/genética , Virus de la Dermatosis Nodular Contagiosa/clasificación , Virus de la Dermatosis Nodular Contagiosa/aislamiento & purificación , Animales , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/epidemiología , Bovinos , África Central/epidemiología , África Occidental/epidemiología , Brotes de Enfermedades
14.
Virulence ; 15(1): 2324711, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38527940

RESUMEN

Micro RNAs (miRNAs) have been implicated in the regulation of maturation, proliferation, differentiation, and activation of immune cells. In this study, we demonstrated that miR-29a antagonizes IFN-γ production at early times post-LSDV infection in cattle. miR-29a was predicted to target upstream IFN-γ regulators, and its inhibition resulted in enhanced IFN-γ production in sensitized peripheral blood mononuclear cells (PBMCs). Further, stimulation of PBMCs with LSDV antigen exhibited lower levels of miR-29a, concomitant with a potent cell-mediated immune response (CMI), characterized by an increase in LSDV-specific CD8+ T cell counts and enhanced levels of IFN-γ, which eventually facilitated virus clearance. In addition, a few immunocompromised cattle (developed secondary LSDV infection at ~ 6 months) that failed to mount a potent cell-mediated immune response, were shown to maintain higher miR-29a levels. Furthermore, as compared to the sensitized crossbred cattle, PBMCs from sensitized Rathi (a native Indian breed) animals exhibited lower levels of miR-29a along with an increase in CD8+ T cell counts and enhanced levels of IFN-γ. Finally, we analysed that a ≥ 60% decrease in miR-29a expression levels in the PBMCs of sensitized cattle correlated with a potent CMI response. In conclusion, miR-29a expression is involved in antagonizing the IFN-γ response in LSDV-infected cattle and may serve as a novel biomarker for the acute phase of LSDV infection, as well as predicting the functionality of T cells in sensitized cattle. In addition, Rathi cattle mount a more potent CMI response against LSDV than crossbred cattle.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Dermatosis Nodular Contagiosa , MicroARNs , Animales , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/genética , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Virus de la Dermatosis Nodular Contagiosa/genética , MicroARNs/genética , Reacción en Cadena de la Polimerasa , Biomarcadores
15.
Viruses ; 16(2)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399948

RESUMEN

Lumpy skin disease virus (LSDV) has recently undergone rapid spread, now being reported from more than 80 countries, affecting predominantly cattle and to a lesser extent, water buffalo. This poxvirus was previously considered to be highly host-range restricted. However, there is an increasing number of published reports on the detection of the virus from different game animal species. The virus has not only been shown to infect a wide range of game species under experimental conditions, but has also been naturally detected in oryx, giraffe, camels and gazelle. In addition, clinical lumpy skin disease has previously been described in springbok (Antidorcas marsupialis), an African antelope species, in South Africa. This report describes the characterization of lumpy skin disease virus belonging to cluster 1.2, from field samples from springbok, impala (Aepyceros melampus) and a giraffe (Giraffa camelopardalis) in South Africa using PCR, Sanger and whole genome sequencing. Most of these samples were submitted from wild animals in nature reserves or game parks, indicating that the disease is not restricted to captive-bred animals on game farms or zoological gardens. The potential role of wildlife species in the transmission and maintenance of LSDV is further discussed and requires continuing investigation, as the virus and disease may pose a serious threat to endangered species.


Asunto(s)
Antílopes , Jirafas , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , Dermatosis Nodular Contagiosa/epidemiología , Animales Salvajes , Sudáfrica , Brotes de Enfermedades/veterinaria
16.
BMC Genomics ; 25(1): 196, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373902

RESUMEN

Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/genética , Filogenia , Genómica , Brotes de Enfermedades
17.
Virus Genes ; 60(2): 159-172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38347303

RESUMEN

Lumpy skin disease (LSD) caused by LSD virus is a WOAH notifiable, high-impact, transboundary poxviral disease of bovines. The first official report of LSDV in India is from Odisha state during August 2019. Since then, cases have been reported from many states including Tamil Nadu, a Southern state of India. The present study deals with isolation and molecular characterization of LSDV from Tamil Nadu during the period August 2020 to July 2022. LSDV was isolated in embryonated chicken eggs (ECE) and BHK 21 cells and was characterized based on P32, RPO30, and GPCR genes. The phylogenetic analysis revealed that Tamil Nadu isolates from India are closely related to other Indian strains, Kenyan strains and strains from neighboring countries such as Bangladesh, Nepal, and Myanmar confirming the common exotic source for the transboundary spread across borders. The presence of unique signature of amino acid (aa) at specific positions (A11, T12, T34, S99, and P199) in the GPCR sequence confirmed the identity of LSDV. A twelve nucleotide (nt94-105) insertion and corresponding aa (TILS) at 30-33 position was found in GPCR sequence and characteristic amino acid proline at 98 position (P98) in the RPO30 gene sequence of our isolates was similar to strains from Bangladesh, Nepal, and Myanmar. Further, dissimilarity of our isolates from Neethling like vaccine strains confirms the circulation of virulent filed strains responsible for the outbreaks.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , India/epidemiología , Filogenia , Kenia , Brotes de Enfermedades , Aminoácidos/genética
18.
Arch Virol ; 169(2): 23, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193946

RESUMEN

In 2018, the molecular epidemiology of lumpy skin disease in Russia was characterized by a surge in novel recombinant vaccine-like strains causing outbreaks along the southern border, spreading in an easterly direction. Currently, five distinct novel recombinant vaccine-like lineages have been described, designated as clusters 2.1 to 2.5. Based on the complete genome sequence analysis of the causative lumpy skin disease virus (Kurgan/Russia/2018), obtained from an eponymous outbreak, the genome was shown to be composed of a Neethling vaccine strain virus as the dominant parental strain and KSGPO vaccine virus as its minor parental strain. These features are similar to those of Saratov/Russia/2017 and Tyumen/Russia/2018, representing clusters 2.1 and 2.4, respectively. However, Kurgan/Russia/2018 has 16 statistically significant recombination events unique to this sequence, contributing to the phylogenetic clustering of Kurgan/Russia/2018 in yet another cluster designed cluster 2.6, based on analysis involving the complete genome sequences.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Virus de la Dermatosis Nodular Contagiosa/genética , Filogenia , Vacunas Sintéticas , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/prevención & control , Brotes de Enfermedades
19.
Microb Pathog ; 186: 106485, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052279

RESUMEN

Lumpy skin disease (LSD) is an emerging transboundary viral disease of livestock animals which was first reported in 1929 in Zambia. Although LSD is a neglected disease of economic importance, it extends a direct impact on the international trade and economy in livestock-dependent countries. Lumpy skin disease virus (LSDV) has been endemic in African countries, where several outbreaks have been reported previously. However, the virus has spread rapidly across the Middle East in the past two decades, reaching Russia and, recently, the Asian subcontinent. With unprecedented cluster outbreaks being reported across Asian countries like India, China, Nepal, Bangladesh, and Pakistan, LSDV is certainly undergoing an epidemiological shift and expanding its geographical footprint worldwide. Due to high mortality among livestock animals, the recent LSD outbreaks have gained attention from global regulatory authorities and raised serious concerns among epidemiologists and veterinary researchers. Despite networked global surveillance of the disease, recurrent LSD cases pose a threat to the livestock industry. Hence, this review provides recent insights into the LSDV biology by augmenting the latest literature associated with its pathogenesis, transmission, current intervention strategies, and economic implications. The review critically examines the changing epidemiological footprint of LSDV globally, especially in relation to developing countries of the Asian subcontinent. We also speculate the possible reasons contributing to the ongoing LSD outbreaks, including illegal animal trade, climate change, genetic recombination events between wild-type and vaccine strains, reversion of vaccine strains to virulent phenotype, and deficiencies in active monitoring during the COVID-19 pandemic.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Humanos , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/prevención & control , Comercio , Pandemias , Internacionalidad , Virus de la Dermatosis Nodular Contagiosa/genética , Brotes de Enfermedades/veterinaria , Vacunas Atenuadas , Pakistán , Filogenia
20.
Viruses ; 15(12)2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140559

RESUMEN

Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains.


Asunto(s)
Capripoxvirus , Virus de la Dermatosis Nodular Contagiosa , Infecciones por Poxviridae , Enfermedades de las Ovejas , Vacunas Virales , Ovinos , Bovinos , Animales , Capripoxvirus/genética , Mutación , Genoma Viral , Virus de la Dermatosis Nodular Contagiosa/genética , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/veterinaria , Vacunas Virales/genética , Enfermedades de las Ovejas/epidemiología , Cabras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA