Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
Viruses ; 16(5)2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38793675

RESUMEN

The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa.


Asunto(s)
Variación Genética , Genotipo , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Filogenia , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/epidemiología , África/epidemiología , Animales , Genoma Viral , Vacunación/veterinaria , Pollos/virología , Vacunas Virales/genética , Vacunas Virales/inmunología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Filogeografía
2.
Sci Rep ; 14(1): 10741, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730036

RESUMEN

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Asunto(s)
Columbidae , Genoma Viral , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Filogenia , Animales , Columbidae/virología , China/epidemiología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/clasificación , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/epidemiología , Genotipo , Granjas , Carne/virología
3.
Arch Razi Inst ; 78(6): 1794-1803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38828167

RESUMEN

Newcastle disease (ND) is an economically significant and extremely spreadable viral illness affecting a wide variety of avian species. ND can rapidly spread within poultry farms and result in considerable economic losses for the global poultry industry. This disease is endemic in Iran, and despite intensive vaccination efforts in the poultry industry, outbreaks of ND occur unexpectedly. This study aimed to isolate the Newcastle disease virus (NDV) from poultry farms with breathing problems in Markazi province, Iran, and investigate the evolutionary relationship and molecular characteristics of the isolates during 2017-2019. To this end, tissue samples (lung, brain, and trachea) were taken from 42 broiler farms exhibiting respiratory symptoms. The samples were inoculated into 9-11-day-old embryonated eggs, and the virus was isolated from 20 (47.6%) of the 42 farms. Subsequently, RT-PCR was used to amplify partial fusion gene sequences from the new isolates. The amplified products were sequenced and compared phylogenetically to the standard pilot dataset (125 selected sequences) generated by the NDV consortium. As determined by phylogenetic analysis, all nine isolates belonged to subgenotype VII.1.1 of genotype VII and were highly similar to isolates from other parts of Iran and China. Moreover, all isolates possessed a polybasic cleavage site motif (112RRQKRF117), characteristic of virulent strains. Furthermore, the present isolates shared a high nucleotide identity (96%) with viruses previously isolated from other provinces of Iran, as determined by BLAST searches and multiple alignments. In addition, they shared a high degree of sequence similarity but were distinct from the existing NDV vaccines. Therefore, the genetic dissimilarity between current vaccine strains and circulating NDVs must be considered in vaccination programs.


Asunto(s)
Pollos , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Filogenia , Enfermedades de las Aves de Corral , Animales , Irán/epidemiología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Proteínas Virales de Fusión/genética , Genotipo
4.
Virus Res ; 318: 198846, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35691423

RESUMEN

To expand our understanding of the epidemiology of pigeon paramyxovirus type 1 (PPMV-1) in China, risk-based active surveillance was undertaken with pigeon swabs collected from live bird markets in 2014-2021. Seventy-six PPMV-1 strains were isolated from 12 provinces (60%) of the 20 provinces surveyed, and the positive rates of PPMV-1 varied from 0.50% to 3.19% annually. The complete genomic sequences of 18 representative viruses were analyzed, revealing a genome of 15,192 nucleotides, with the gene order 3'-NP-P-M-F-HN-L-5'. All isolates contained the 112RRQKRF117 cleavage site in the fusion (F) protein, a characteristic generally associated with virulent Newcastle disease viruses (NDVs), and the intracerebral pathogenicity index values (1.05-1.41) of four isolates indicated their virulence. A challenge experiment also demonstrated that all four isolates are pathogenic to pigeons, with morbidity rates of 60-100% and mortality rates of 0-30%. A further analysis of the functional domains of the F and HN proteins revealed several mutations in the fusion peptide, signal peptide, neutralizing epitopes, heptad repeat region, and transmembrane domains, and the substitution of cysteine residue 25 (C25Y) and substitutions in the HRb region (V287I) of the F protein and the transmembrane domain (V45A) of the HN protein may play important roles in PPMV-1 virulence. In a phylogenetic analysis based on the complete sequences of the F gene, all eighteen isolates all clustered into sub-genotype VI.2.1.1.2.2 (VIb) in class II, and shared high nucleotide sequence identity, indicating that the PPMV-1 strains in sub-genotype VI.2.1.1.2.2 are the predominant PPMV-1 viruses in pigeons in China and that the variations in these viruses have been relatively stable over the past 8 years. This study identifies the genetic and pathogenicity characteristics of the PPMV-1 strains prevalent in China and extends our understanding of the prevalence of this virus in China.


Asunto(s)
Columbidae , Monitoreo Epidemiológico , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Animales , China/epidemiología , Columbidae/virología , Monitoreo Epidemiológico/veterinaria , Genoma Viral , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Filogenia , Medición de Riesgo/métodos , Virulencia
5.
PLoS One ; 17(2): e0264028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171961

RESUMEN

Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a contagious disease that affects a variety of domestic and wild avian species. Though ND is vaccine-preventable, it is a persistent threat to poultry industry across the globe. The disease represents a leading cause of morbidity and mortality in chickens. To better understand the epidemiology of NDV among commercial and backyard chickens of Odisha, where chicken farming is being prioritized to assist with poverty alleviation, a cross-sectional study was conducted in two distinct seasons during 2018. Choanal swabs (n = 1361) from live birds (commercial layers, broilers, and backyard chicken) and tracheal tissues from dead birds (n = 10) were collected and tested by real-time reverse transcription polymerase chain reaction (RT-PCR) for the presence of matrix (M) and fusion (F) genes of NDV. Risk factors at the flock and individual bird levels (health status, ND vaccination status, geographical zone, management system, and housing) were assessed using multivariable logistic regression analyses. Of the 1371 samples tested, 160 were positive for M gene amplification indicating an overall apparent prevalence of 11.7% (95% CI 10.1-13.5%). Circulation of virulent NDV strains was also evident with apparent prevalence of 8.1% (13/160; 95% CI: 4.8-13.4%). In addition, commercial birds had significantly higher odds (75%) of being infected with NDV as compared to backyard poultry (p = 0.01). This study helps fill a knowledge gap in the prevalence and distribution of NDV in apparently healthy birds in eastern India, and provides a framework for future longitudinal research of NDV risk and mitigation in targeted geographies-a step forward for effective control of ND in Odisha.


Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/epidemiología , Proteínas Virales/genética , Animales , Anticuerpos Antivirales/inmunología , Pollos , Estudios Transversales , Femenino , India/epidemiología , Masculino , Enfermedad de Newcastle/genética , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Factores de Riesgo
6.
Viruses ; 14(2)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216008

RESUMEN

Avian influenza virus (AIV) variants emerge frequently, which challenges rapid diagnosis. Appropriate diagnosis reaching the sub- and pathotype level is the basis of combatting notifiable AIV infections. Real-time RT-PCR (RT-qPCR) has become a standard diagnostic tool. Here, a total of 24 arrayed RT-qPCRs is introduced for full subtyping of 16 hemagglutinin and nine neuraminidase subtypes of AIV. This array, designated Riems Influenza A Typing Array version 2 (RITA-2), represents an updated and economized version of the RITA-1 array previously published by Hoffmann et al. RITA-2 provides improved integration of assays (24 instead of 32 parallel reactions) and reduced assay volume (12.5 µL). The technique also adds RT-qPCRs to detect Newcastle Disease (NDV) and Infectious Bronchitis viruses (IBV). In addition, it maximizes inclusivity (all sequences within one subtype) and exclusivity (no intersubtypic cross-reactions) as shown in validation runs using a panel of 428 AIV reference isolates, 15 reference samples each of NDV and IBV, and 122 clinical samples. The open format of RITA-2 is particularly tailored to subtyping influenza A virus of avian hosts and Eurasian geographic origin. Decoupling and re-arranging selected RT-qPCRs to detect specific AIV variants causing epizootic outbreaks with a temporal and/or geographic restriction is possible.


Asunto(s)
Virus de la Bronquitis Infecciosa/genética , Virus de la Influenza A/genética , Virus de la Enfermedad de Newcastle/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Aves/virología , Equidae/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Neuraminidasa/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Sensibilidad y Especificidad , Porcinos/virología
7.
Viruses ; 13(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34960715

RESUMEN

Newcastle disease virus (NDV) can infect over 250 bird species with variable pathogenicity; it can also infect humans in rare cases. The present study investigated an outbreak in feral pigeons in São Paulo city, Brazil, in 2019. Affected birds displayed neurological signs, and hemorrhages were observed in different tissues. Histopathology changes with infiltration of mononuclear inflammatory cells were also found in the brain, kidney, proventriculus, heart, and spleen. NDV staining was detected by immunohistochemistry. Twenty-seven out of thirty-four tested samples (swabs and tissues) were positive for Newcastle disease virus by RT-qPCR test, targeting the M gene. One isolate, obtained from a pool of positive swab samples, was characterized by the intracerebral pathogenicity index (ICPI) and the hemagglutination inhibition (HI) tests. This isolate had an ICPI of 0.99, confirming a virulent NDV strain. The monoclonal antibody 617/161, which recognizes a distinct epitope in pigeon NDV strains, inhibited the isolate with an HI titer of 512. A complete genome of NDV was obtained using next-generation sequencing. Phylogenetic analysis based on the complete CDS F gene grouped the detected isolate with other viruses from subgenotype VI.2.1.2, class II, including one previously reported in Southern Brazil in 2014. This study reports a comprehensive characterization of the subgenotype VI.2.1.2, which seems to have been circulating in Brazilian urban areas since 2014. Due to the zoonotic risk of NDV, virus surveillance in feral pigeons should also be systematically performed in urban areas.


Asunto(s)
Columbidae , Brotes de Enfermedades/veterinaria , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/genética , Animales , Brasil/epidemiología , Genoma Viral , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad de Newcastle/patología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/patogenicidad , Filogenia , Virulencia , Secuenciación Completa del Genoma
8.
Mol Biol Rep ; 48(11): 7281-7291, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34623594

RESUMEN

BACKGROUND: Newcastle disease, is one of the most important diseases of the poultry industry, has many economic losses. The aim of this study was to isolate and determine the molecular identity of Newcastle disease virus in 40 broiler flocks with respiratory symptoms in four provinces of Iran. METHODS AND RESULTS: Samples of farms with respiratory symptoms were collected from different regions of Isfahan, East Azerbaijan, Golestan, and Khuzestan provinces and inoculated into 9-day-old embryonated chicken eggs. The Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect the Newcastle disease virus in allantoic fluid. Of the 40 flocks, the virus was isolated and identified in 16 flocks. The PCR products of 16 isolates were sequenced, and a phylogenetic tree was drawn. Accordingly, six isolates were in genotype II and ten isolates were in subgenotype VII.1.1 (VIId) of class II. CONCLUSION: Both genotypes were present in all four provinces. The isolates of Khuzestan province showed the greatest diversity compared to the other three provinces. The similarity of isolates belonging to genotype II in this study was observed with Pakistan, China, and Nigeria, and other isolates were similar to previous isolates in Iran. Also, the highest amino acid sequence in the F-protein cleavage site was 112RRQKR/F117 for VII.1.1 (VIId) genotype isolates and 112GRQGR/L117 for II genotype isolates.


Asunto(s)
Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , ARN Viral , Animales , Embrión de Pollo , Pollos , Irán , Virus de la Enfermedad de Newcastle/genética , Filogenia , Enfermedades de las Aves de Corral/virología , Análisis de Secuencia de ARN
9.
Viruses ; 13(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34452385

RESUMEN

Newcastle disease virus (NDV) is a significant pathogen of poultry; however, variants also affect other species, including pigeons. While NDV is endemic in Bangladesh, and poultry isolates have been recently characterized, information about viruses infecting pigeons is limited. Worldwide, pigeon-derived isolates are commonly of low to moderate virulence for chickens. Here, we studied a pigeon-derived NDV isolated in Bangladesh in 2010. To molecularly characterize the isolate, we sequenced its complete fusion gene and performed a comprehensive phylogenetic analysis. We further studied the biological properties of the virus by estimating mean death time (MDT) and by experimentally infecting 5-week-old naïve Sonali chickens. The studied virus clustered in sub-genotype XXI.1.2 with NDV from pigeons from Pakistan isolated during 2014-2018. Deduced amino acid sequence analysis showed a polybasic fusion protein cleavage site motif, typical for virulent NDV. The performed in vivo pathogenicity testing showed a MDT of 40.8 h, and along with previously established intracerebral pathogenicity index of 1.51, these indicated a velogenic pathotype for chickens, which is not typical for pigeon-derived viruses. The experimental infection of chickens resulted in marked neurological signs and high mortality starting at 7 days post infection (dpi). Mild congestion in the thymus and necrosis in the spleen were observed at an advanced stage of infection. Microscopically, lymphoid depletion in the thymus, spleen, and bursa of Fabricius were found at 5 dpi, which progressed to severe in the following days. Mild to moderate proliferation of glial cells was noticed in the brain starting at 2 dpi, which gradually progressed with time, leading to focal nodular aggregation. This study reports the velogenic nature for domestic chickens of a pigeon-derived NDV isolate of sub-genotype XXI.1.2. Our findings show that not all pigeon-derived viruses are of low virulence for chickens and highlight the importance of biologically evaluating the pathogenicity of NDV isolated from pigeons.


Asunto(s)
Pollos/virología , Columbidae/virología , Enfermedad de Newcastle/mortalidad , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/mortalidad , Animales , Bangladesh , Huevos/virología , Genoma Viral , Genotipo , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Filogenia , Enfermedades de las Aves de Corral/virología , Análisis de Secuencia de ADN , Virulencia
10.
Genes (Basel) ; 12(4)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805275

RESUMEN

Newcastle disease virus (NDV) causes a highly contagious and devastating disease in poultry. ND causes heavy economic losses to the global poultry industry by decreasing the growth rate, decrease in egg production high morbidity and mortality. Although significant advances have been made in the vaccine development, outbreaks are reported in vaccinated birds. In this study, we report the damage caused by NDV infection in the pancreatic tissues of vaccinated and specific-pathogen-free chickens. The histopathological examination of the pancreas showed severe damage in the form of partial depletion of zymogen granules, acinar cell vacuolization, necrosis, apoptosis, congestion in the large and small vessels, sloughing of epithelial cells of the pancreatic duct, and mild perivascular edema. Increased plasma levels of corticosterone and somatostatin were observed in NDV-infected chicken at three- and five- days post infection (DPI). A slight decrease in the plasma concentrations of insulin was noticed at 5 DPI. Significant changes were not observed in the plasma levels of glucagon. Furthermore, NDV infection decreased the activity and mRNA expression of amylase, lipase, and trypsin from the pancreas. Taken together, our findings highlight that NDV induces extensive tissue damage in the pancreas, decreases the activity and expression of pancreatic enzymes, and increases plasma corticosterone and somatostatin. These findings provide new insights that a defective pancreas may be one of the reasons for decreased growth performance after NDV infection in chickens.


Asunto(s)
Islotes Pancreáticos/patología , Enfermedad de Newcastle/complicaciones , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Páncreas Exocrino/patología , Pancreatitis/veterinaria , Enfermedades de las Aves de Corral/patología , Animales , Pollos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/virología , Enfermedad de Newcastle/metabolismo , Enfermedad de Newcastle/virología , Páncreas Exocrino/metabolismo , Páncreas Exocrino/virología , Pancreatitis/patología , Pancreatitis/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología
11.
Sci Rep ; 11(1): 8486, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875770

RESUMEN

Long non-coding RNAs (lncRNAs) are the transcripts of length longer than 200 nucleotides. They are involved in the regulation of various biological activities. Leghorn and Fayoumi breeds of Gallus gallus were known to be having differential resistance against Newcastle Disease Virus (NDV) infection. Differentially expressed genes which were thought to be involved in this pattern of resistance were already studied. Here we report the analysis of the transcriptomic data of Harderian gland of Gallus gallus for studying the lncRNAs involved in regulation of these genes. Using bioinformatics approaches, a total of 37,411 lncRNAs were extracted and 359 lncRNAs were differentially expressing. Functional annotation using co-expression analysis revealed the involvement of lncRNAs in the regulation of various pathways. We also identified 1232 quantitative trait loci (QTLs) associated with the genes interacting with lncRNA. Additionally, we identified the role of lncRNAs as putative micro RNA precursors, and the interaction of differentially expressed Genes with transcription factors and micro RNAs. Our study revealed the role of lncRNAs during host response against NDV infection which would facilitate future experiments in unravelling regulatory mechanisms of development in the genetic improvement of the susceptible breeds of Gallus gallus.


Asunto(s)
Pollos/genética , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , ARN Largo no Codificante/genética , Transcriptoma , Animales , Pollos/virología , Biología Computacional/métodos , Redes Reguladoras de Genes
12.
PLoS One ; 16(4): e0247729, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861761

RESUMEN

This study assessed different methods (tracheal and choanal cleft swabs from individual birds, and poultry dust as a population level measure) to evaluate the shedding kinetics of infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) genome in meat chicken flocks after spray vaccination at hatchery. Dust samples and tracheal and choanal cleft swabs were collected from four meat chicken flocks at 10, 14, 21 and 31 days post vaccination (dpv) and tested for IBV and NDV genome copies (GC) by reverse transcriptase (RT)-PCR. IBV and NDV GC were detected in all sample types throughout the study period. Detection rates for choanal cleft and tracheal swabs were comparable, with moderate and fair agreement between sample types for IBV (McNemar's = 0.27, kappa = 0.44) and NDV (McNemar's = 0.09; kappa = 0.31) GC respectively. There was no significant association for IBV GC in swabs and dust samples (R2 = 0.15, P = 0.13) but NDV detection rates and viral load in swabs were strongly associated with NDV GC in dust samples (R2 = 0.86 and R2 = 0.90, P<0.001). There was no difference in IBV and NDV GC in dust samples collected from different locations within a poultry house. In conclusion, dust samples collected from any location within poultry house show promise for monitoring IBV and NDV GC in meat chickens at a population level and choanal cleft swabs can be used for detection of IBV and NDV GC instead of tracheal swabs in individual birds.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/diagnóstico , Animales , Pollos/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Genoma Viral , Virus de la Bronquitis Infecciosa/genética , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/prevención & control , Vacunación
13.
Arch Virol ; 166(6): 1599-1605, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33755802

RESUMEN

Pigeon paramyxovirus-1 (PPMV-1) is a strain of Newcastle disease virus (NDV) that has adapted to infect pigeons and poses a constant threat to the commercial poultry industry. Early detection via rapid and sensitive methods, along with timely preventative and mitigating actions, is important for reducing the spread of PPMV-1. Here, we report the development of a TaqMan loop-mediated isothermal amplification assay (TaqMan-LAMP) for rapid and specific detection of PPMV-1 based on the F gene. This system makes use of six novel primers and a TaqMan probe that targets nine distinct regions of the F gene that are highly conserved among PPMV-1 isolates. The results showed that the limit of detection was 10 copies µL-1 for PPMV-1 cDNA and 0.1 ng for PPMV-1 RNA. The reaction was completed within 25 min and was thus faster than conventional RT-PCR. Moreover, no cross-reactions with similar viruses or with peste des petits ruminants virus (PPRV) or NDV LaSota vaccine strains were observed under the same conditions. To evaluate the applicability of the assay, the TaqMan-LAMP assay and a commercial RT-PCR assay were compared using 108 clinical samples, and the concordance rate between two methods was found to be 96.3%. The newly developed PPMV-1 TaqMan-LAMP assay can therefore be used for simple, efficient, rapid, specific, and sensitive diagnosis of PPMV-1 infections.


Asunto(s)
Técnicas de Diagnóstico Molecular/veterinaria , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Animales , Columbidae , Heces/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral , Sensibilidad y Especificidad , Factores de Tiempo
14.
Trop Anim Health Prod ; 53(2): 192, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33660073

RESUMEN

A cross-sectional study was carried out in the period between January and April 2019 with the aim of establishing prevalence of Newcastle disease (ND) in backyard chickens in Banadir region of Somalia using indirect enzyme-linked immunosorbent assay (iELISA). A total of 373 unvaccinated free scavenging backyard chickens were sampled from five districts in Banadir region, namely Dharkenley, Hodan, Wadajir, Hawlwadag, and Daynile. The overall prevalence was found to be 39.4% (95% confidence interval: 34.6-44.4%) with a mean antibody titre of 3844.10 ± 263.3 (standard error). The seroprevalence of ND virus (NDV) antibody in Wadajir district was the highest (66.6%) followed by Hawlwadag, Daynile, Dharkenley, and Hodan with prevalence of 56%, 42.1%, 42.35%, and 10.6%, respectively, with statistically significant differences (P < 0.05). Adult chickens had significantly higher prevalence (43.8%) than growers (19.4%) (P < 0.05). The present study, which is the first of its kind in Somalia to the best of our knowledge, concluded that the disease is highly prevalent in the study area; therefore, molecular studies on the characteristics of circulating strains are to be carried out in order to develop an evidence-based control programme and minimize the economic and social impacts of ND on smallholders.


Asunto(s)
Pollos/virología , Enfermedad de Newcastle/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Animales , Anticuerpos Antivirales/inmunología , Estudios Transversales , Femenino , Masculino , Virus de la Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Estudios Seroepidemiológicos , Somalia/epidemiología
15.
J Vet Diagn Invest ; 33(2): 308-312, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33685333

RESUMEN

Newcastle disease is an avian infectious disease caused by avian orthoavulavirus 1, also known as Newcastle disease virus (NDV). This disease has caused significant economic losses to the poultry industry worldwide. The rapid and simple detection of NDV infection is crucial to inform the appropriate control measures. We developed a reverse-transcription recombinase polymerase amplification (RT-RPA) assay combined with a lateral flow assay (LFA) for NDV detection. The RPA assay can be completed at 37°C within 20 min, and the RPA result can be visualized by the LFA within 5 min. The NDV RT-RPA-LFA detected NDV specifically with no cross-reactivity with other pathogens. The detection limit of NDV cDNA with our RT-RPA-LFA was 3.34 × 10-3 ng/µL. Consequently, the RT-RPA-LFA showed good potential for the detection of NDV infection in the field, especially in resource-limited settings.


Asunto(s)
Pollos , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Animales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad
16.
Arch Virol ; 166(4): 1113-1124, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33576898

RESUMEN

Avian influenza virus (AIV), Newcastle disease virus (NDV), and avian infectious bronchitis virus (IBV) inflict immense damage on the global poultry industry annually. Serological diagnostic methods are fundamental for the effective control and prevention of outbreaks caused by these viruses. In this study, a novel triplex protein microarray assay was developed and validated for the rapid and simultaneous visualized detection of antibodies against AIV, NDV, and IBV in chicken sera. The AIV nuclear protein (NP), NDV phosphoprotein (P), and IBV nonstructural protein 5 (nsp5) were produced in a prokaryotic expression system, purified, and immobilized onto an initiator integrated poly(dimethylsiloxane) (iPDMS) film as probes to detect antibodies against these viruses in chicken sera. After optimization of the reaction conditions, no cross-reactivity was detected with infectious bursal disease virus, avian leukosis virus subgroup J and chicken anemia virus antisera. The lowest detectable antibody titers in this assay corresponded to hemagglutination inhibition (HI) titers of 24 and 21 for AIV and NDV, respectively, and to an IDEXX antibody titer of 103 for IBV, using the HI assay and IDEXX commercial ELISA kit as the reference methods. When156 serum samples were tested using the new assay, the HI test and the IBV IDEXX ELISA kit, the assay showed 96.8% (151/156), 97.4% (152/156) and 99.4% (155/156) diagnostic accuracy for detection of AIV, NDV and IBV antibody, respectively. The current study suggests that the newly developed triplex microarray is rapid, sensitive, and specific, providing a viable alternative assay for AIV, NDV, and IBV antibody screening in epidemiological investigations and vaccination evaluations.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/diagnóstico , Análisis por Matrices de Proteínas/veterinaria , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Pollos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Inmunoensayo/normas , Inmunoensayo/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Virus de la Influenza A/inmunología , Gripe Aviar/diagnóstico , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Pruebas Serológicas/normas , Pruebas Serológicas/veterinaria
17.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33507145

RESUMEN

Newcastle disease virus (NDV) is endemic in Bangladesh and is a major threat to commercial poultry operations. While complete fusion (F) genes are recommended for molecular characterization and classification of NDV isolates, heretofore, only partial F gene data have been available for Bangladeshi NDVs. To this end, we obtained the full-length F gene coding sequences of 11 representative NDVs isolated in Bangladesh between 2010 and 2017. In addition, one of the viruses (MK934289/chicken/Bangladesh/C161/2010) was used in an experimental infection of chickens to establish the viral pathotype and study gross and microscopic lesions. Phylogenetic analysis provided evidence that all studied Bangladeshi isolates belong to genotype XIII.2 of class II NDVs. Six of the viruses were isolated between 2010 and 2017 and grouped together with isolates from neighbouring India during 2013-2016. Another four Bangladeshi isolates (2010-2016) formed a separate monophyletic branch within XIII.2 and showed high nucleotide distance from the isolates from India and the other six Bangladeshi viruses within the sub-genotype; however, none of these groups fulfils all classification criteria to be named as a separate sub-genotype. The eleventh Bangladeshi virus studied here (C162) was genetically more distant from the remaining isolates. It out-grouped the viruses from sub-genotypes XIII.2.1 and XIII.2.2 and showed more than 9.5 % nucleotide distance from all genotype XIII sub-genotypes. This isolate may represent an NDV variant that is evolving independently from the other viruses in the region. The experimental infection in chickens revealed that the tested isolate (C161) is a velogenic viscerotropic virus. Massive haemorrhages, congestion and necrosis in different visceral organs, and lymphoid depletion in lymphoid tissues, typical for infection with velogenic NDV, were observed. Our findings demonstrate the endemic circulation of sub-genotype XIII.2 in Southcentral Asia and further genetic diversification of these viruses in Bangladesh and neighbouring India. This constant evolution of the viruses may lead to the establishment of new genetic groups in the region. Additional historical and prospective virus and surveillance data from the region and neighbouring countries will allow a more detailed epidemiological inference.


Asunto(s)
Variación Genética , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Animales , Asia , Bangladesh/epidemiología , Pollos/virología , Evolución Molecular , Genotipo , India , Pulmón/patología , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/patología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/patogenicidad , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , ARN Viral/genética , Virulencia
18.
Viruses ; 13(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498495

RESUMEN

Newcastle disease (ND) is a highly transmissible and devastating disease that affects poultry and wild birds worldwide. Comprehensive knowledge regarding the characteristics and epidemiological factors of the ND virus (NDV) is critical for the control and prevention of ND. Effective vaccinations can prevent and control the spread of the NDV in poultry populations. For decades, the Democratic Republic of the Congo (DRC) has reported the impacts of ND on commercial and traditional poultry farming systems. The reports were preliminary clinical observations, and few cases were confirmed in the laboratory. However, data on the phylogenetic, genetic, and virological characteristics of NDVs circulating in the DRC are not available. In this study, the whole-genome sequences of three NDV isolates obtained using the next-generation sequencing method revealed two isolates that were a new variant of NDV, and one isolate that was clustered in the subgenotype VII.2. All DRC isolates were velogenic and were antigenically closely related to the vaccine strains. Our findings reveal that despite the circulation of the new variant, ND can be controlled in the DRC using the current vaccine. However, epidemiological studies should be conducted to elucidate the endemicity of the disease so that better control strategies can be implemented.


Asunto(s)
Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/virología , Animales , República Democrática del Congo/epidemiología , Genotipo , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , ARN Viral/genética , Proteínas Virales/genética , Secuenciación Completa del Genoma
19.
Viruses ; 13(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451125

RESUMEN

Kenyan poultry consists of ~80% free-range indigenous chickens kept in small flocks (~30 birds) on backyard poultry farms (BPFs) and they are traded via live bird markets (LBMs). Newcastle disease virus (NDV) was detected in samples collected from chickens, wild farm birds, and other domestic poultry species during a 2017-2018 survey conducted at 66 BPFs and 21 LBMs in nine Kenyan counties. NDV nucleic acids were detected by rRT-PCR L-test in 39.5% (641/1621) of 1621 analyzed samples, of which 9.67% (62/641) were NDV-positive by both the L-test and a fusion-test designed to identify the virulent virus, with a majority being at LBMs (64.5%; 40/62) compared to BPFs (25.5%; 22/62). Virus isolation and next-generation sequencing (NGS) on a subset of samples resulted in 32 complete NDV genome sequences with 95.8-100% nucleotide identities amongst themselves and 95.7-98.2% identity with other east African isolates from 2010-2016. These isolates were classified as a new sub-genotype, V.3, and shared 86.5-88.9% and 88.5-91.8% nucleotide identities with subgenotypes V.1 and V.2 viruses, respectively. The putative fusion protein cleavage site (113R-Q-K-R↓F 117) in all 32 isolates, and a 1.86 ICPI score of an isolate from a BPF chicken that had clinical signs consistent with Newcastle disease, confirmed the high virulence of the NDVs. Compared to genotypes V and VI viruses, the attachment (HN) protein of 18 of the 32 vNDVs had amino acid substitutions in the antigenic sites. A time-scaled phylogeographic analysis suggests a west-to-east dispersal of the NDVs via the live chicken trade, but the virus origins remain unconfirmed due to scarcity of continuous and systematic surveillance data. This study reveals the widespread prevalence of vNDVs in Kenyan backyard poultry, the central role of LBMs in the dispersal and possibly generation of new virus variants, and the need for robust molecular epidemiological surveillance in poultry and non-poultry avian species.


Asunto(s)
Pollos/virología , Genotipo , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Animales , Granjas , Genoma Viral , Genómica/métodos , Kenia/epidemiología , Epidemiología Molecular , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/patogenicidad , Filogenia , Filogeografía , Vigilancia en Salud Pública , ARN Viral , Análisis Espacio-Temporal , Virulencia
20.
Avian Pathol ; 50(1): 78-84, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33059461

RESUMEN

General diagnosis of poultry viruses primarily relies on detection of viruses in samples, but many farms are located in remote areas requiring logistic transportation. Filter paper cards are a useful technology that offer an alternative for collecting and preserving samples without hazardous exposure. The goal of this study was to compare three filter papers: the Flinders Technology Associates filter (FTA®) card, dried blood spot (DBS) card and qualitative filter paper (FP) grade 2 to collect poultry samples. In particular, we have used Newcastle disease virus (NDV) to evaluate safety and a Marek's disease virus (MDV) attenuated vaccine (CVI988) to evaluate stability of viral DNA. This experiment was divided into two parts. The first part was to determine the DNA stability and detection limit of CVI988 in samples collected in different paper supports after four storage times (3, 7, 14 and 30 days post spot). The second part was to determine the safety of papers by evaluating the viral inactivation efficacy using NDV as a representative virus. Results showed that all papers could preserve CVI988 DNA at all times, with a detection limit of 0.5 PFU/5 µl for FTA® and DBS cards, and 5 PFU/5 µl for FP. Our results showed that the NDV remained viable and infectious on the DBS card and FP, while no viable virus was detected on the FTA® card, suggesting that the FTA® card was safest to use. Therefore, the use of the DBS card and FP for infectious sample collection should be discouraged and reconsidered. RESEARCH HIGHLIGHTS The detection limits of the FTA® card, DBS card and FP for CVI988 detection were 0.5, 0.5 and 5 PFU/5 µl, respectively. All three filter papers could preserve viral DNA for at least 30 days of post spot. The DBS card and FP are not suitable for collecting NDV samples, which is one of the major economical threats for the poultry industry worldwide.


Asunto(s)
Herpesvirus Gallináceo 2/aislamiento & purificación , Enfermedad de Marek/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , Manejo de Especímenes/veterinaria , Animales , ADN Viral/genética , Herpesvirus Gallináceo 2/genética , Límite de Detección , Virus de la Enfermedad de Newcastle/genética , Aves de Corral , Inactivación de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA