Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.634
Filtrar
1.
PLoS One ; 19(10): e0308560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39374224

RESUMEN

The Atlantic Forest Biome (AFB) creates an ideal environment for the proliferation of vector mosquitoes, such as Haemagogus and Sabethes species, which transmit the Yellow Fever virus (YFV) to both human and non-human primates (NHP) (particularly Alouatta sp. and Callithrix sp.). From 2016 to 2020, 748 fatal cases of YF in humans and 1,763 in NHPs were reported in this biome, following several years free from the disease. This underscores the imminent risk posed by the YFV. In this study, we examined the spatiotemporal distribution patterns of YF cases in both NHPs and humans across the entire AFB during the outbreak period, using a generalized linear mixed regression model (GLMM) at the municipal level. Our analysis examined factors associated with the spread of YFV, including environmental characteristics, climate conditions, human vaccination coverage, and the presence of two additional YFV-affected NHP species. The occurrence of epizootics has been directly associated with natural forest formations and the presence of species within the Callithrix genus. Additionally, epizootics have been shown to be directly associated with human prevalence. Furthermore, human prevalence showed an inverse correlation with urban areas, temporary croplands, and savannah and grassland areas. Further analyses using Moran's Index to incorporate the neighborhoods of municipalities with cases in each studied host revealed additional variables, such as altitude, which showed a positive correlation. Additionally, the occurrence of the disease in both hosts exhibited a spatio-temporal distribution pattern. To effectively mitigate the spread of the virus, it is necessary to proactively expand vaccination coverage, refine NHP surveillance strategies, and enhance entomological surveillance in both natural and modified environments.


Asunto(s)
Bosques , Mosquitos Vectores , Fiebre Amarilla , Virus de la Fiebre Amarilla , Fiebre Amarilla/epidemiología , Fiebre Amarilla/transmisión , Animales , Humanos , Brasil/epidemiología , Mosquitos Vectores/virología , Clima , Brotes de Enfermedades , Ecosistema
2.
PLoS Pathog ; 20(10): e1012607, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39356716

RESUMEN

The RNA genome of orthoflaviviruses encodes a methyltransferase within the non-structural protein NS5, which is involved in 2'-O-methylation of the 5'-terminal nucleotide of the viral genome resulting in a cap1 structure. While a 2'-O-unmethylated cap0 structure is recognized in vertebrates by the RNA sensor RIG-I, the cap1 structure allows orthoflaviviruses to evade the vertebrate innate immune system. Here, we analyzed whether the cap0 structure is also recognized in mosquitoes. Replication analyses of 2'-O-methyltransferase deficient yellow fever virus mutants (YFV NS5-E218A) of the vaccine 17D and the wild-type Asibi strain in mosquito cells revealed a distinct downregulation of the cap0 viruses. Interestingly, the level of inhibition differed for various mosquito cells. The most striking difference was found in Aedes albopictus-derived C6/36 cells with YFV-17D cap0 replication being completely blocked. Replication of YFV-Asibi cap0 was also suppressed in mosquito cells but to a lower extent. Analyses using chimeras between YFV-17D and YFV-Asibi suggest that a synergistic effect of several mutations across the viral genome accompanied by a faster initial growth rate of YFV-Asibi cap1 correlates with the lower level of YFV-Asibi cap0 attenuation. Viral growth analyses in Dicer-2 knockout cells demonstrated that Dicer-2 is entirely dispensable for attenuating the YFV cap0 viruses. Translation of a replication-incompetent cap0 reporter YFV-17D genome was reduced in mosquito cells, indicating a cap0 sensing translation regulation mechanism. Further, oral infection of Aedes aegypti mosquitoes resulted in lower infection rates for YFV-Asibi cap0. The latter is related to lower viral loads found in the midguts, which largely diminished dissemination to secondary tissues. After intrathoracic infection, YFV-Asibi cap0 replicated slower and to decreased amounts in secondary tissues compared to YFV-Asibi cap1. These results suggest the existence of an ubiquitously expressed innate antiviral protein recognizing 5'-terminal RNA cap-modifications in mosquitoes, both in the midgut as well as in secondary tissues.


Asunto(s)
Aedes , Metiltransferasas , Replicación Viral , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Aedes/virología , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/fisiología , Replicación Viral/fisiología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Fiebre Amarilla/virología , Fiebre Amarilla/transmisión , Mosquitos Vectores/virología , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , ARN Viral/genética
3.
Sci Rep ; 14(1): 22520, 2024 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342022

RESUMEN

Monitoring yellow fever in non-human primates (NHPs) is an early warning system for sylvatic yellow fever outbreaks, aiding in preventing human cases. However, current diagnostic tests for this disease, primarily relying on RT-qPCR, are complex and costly. Therefore, there is a critical need for simpler and more cost-effective methods to detect yellow fever virus (YFV) infection in NHPs, enabling early identification of viral circulation. In this study, an RT-LAMP assay for detecting YFV in NHP samples was developed and validated. Two sets of RT-LAMP primers targeting the YFV NS5 and E genes were designed and tested together with a third primer set to the NS1 locus using NHP tissue samples from Southern Brazil. The results were visualized by colorimetry and compared to the RT-qPCR test. Standardization and validation of the RT-LAMP assay demonstrated 100% sensitivity and specificity compared to RT-qPCR, with a detection limit of 12 PFU/mL. Additionally, the cross-reactivity test with other flaviviruses confirmed a specificity of 100%. Our newly developed RT-LAMP diagnostic test for YFV in NHP samples will significantly contribute to yellow fever monitoring efforts, providing a simpler and more accessible method for viral early detection. This advancement holds promise for enhancing surveillance and ultimately preventing the spread of yellow fever.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/aislamiento & purificación , Brasil/epidemiología , Fiebre Amarilla/diagnóstico , Fiebre Amarilla/virología , Fiebre Amarilla/epidemiología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Primates/virología
4.
EBioMedicine ; 108: 105332, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39293214

RESUMEN

BACKGROUND: Yellow fever (YF), a mosquito-borne acute viral haemorrhagic illness, is endemic to many tropical and subtropical areas of Africa and Central and South America. Vaccination remains the most effective prevention strategy; however, as repeated outbreaks have exhausted vaccine stockpiles, there is a need for improved YF vaccines to meet global demand. A live-attenuated YF vaccine candidate (referred to as vYF) cloned from a YF-17D vaccine (YF-VAX®) sub-strain, adapted for growth in Vero cells cultured in serum-free media, is in clinical development. We report the innate and adaptive immune responses and the transcriptome profile of selected genes induced by vYF. METHODS: Healthy adults aged 18-60 years were randomised at a 1:1:1:1 ratio to receive one dose of vYF at 4, 5 or 6 Log CCID50 or YF-VAX (reference vaccine), administered subcutaneously in the upper arm (ClinicalTrials.gov identifier: NCT04142086). Blood/serum samples were obtained at scheduled time points through 180 days (D180) post-vaccination. The surrogate endpoints assessed were: serum cytokine/chemokine concentrations, measured by bead-based Multiplex assay; peripheral blood vYF-specific IgG and IgM memory B cell frequencies, measured by FluoroSpot assay; and expression of genes involved in the immune response to YF-17D vaccination by RT-qPCR. FINDINGS: There was no increase in any of the cytokine/chemokine concentrations assessed through D14 following vaccination with vYF or YF-VAX, except for a slight increase in IP-10 (CXCL10) levels. The gene expression profiles and kinetics following vaccination with vYF and YF-VAX were similar, inclusive of innate (antiviral responses [type-1 interferon, IFN signal transduction; interferon-stimulated genes], activated dendritic cells, viral sensing pattern recognition receptors) and adaptive (cell division in stimulated CD4+ T cells, B cell and antibody) immune signatures, which peaked at D7 and D14, respectively. Increases in vYF-specific IgG and IgM memory B cell frequencies at D28 and D180 were similar across the study groups. INTERPRETATION: vYF-induced strong innate and adaptive immune responses comparable to those induced by YF-VAX, with similar transcriptomic and kinetic profiles observed. FUNDING: Sanofi.


Asunto(s)
Anticuerpos Antivirales , Citocinas , Transcriptoma , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Virus de la Fiebre Amarilla , Humanos , Vacuna contra la Fiebre Amarilla/inmunología , Adulto , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Fiebre Amarilla/virología , Femenino , Masculino , Virus de la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Citocinas/metabolismo , Adulto Joven , Persona de Mediana Edad , Adolescente , Perfilación de la Expresión Génica , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunación , Inmunidad Adaptativa , Animales
5.
Viruses ; 16(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205186

RESUMEN

Yellow fever virus (YFV) infections can cause severe diseases in humans, resulting in mass casualties in Africa and the Americas each year. Secretory NS1 (sNS1) is thought to be used as a diagnostic marker of flavivirus infections, playing an essential role in the flavivirus life cycle, but little is known about the composition and structure of YFV sNS1. Here, we present that the recombinant YFV sNS1 exists in a heterogeneous mixture of oligomerizations, predominantly in the tetrameric form. The cryoEM structures show that the YFV tetramer of sNS1 is stacked by the hydrophobic interaction between ß-roll domains and greasy fingers. According to the 3D variability analysis, the tetramer is in a semi-stable state that may contain multiple conformations with dynamic changes. We believe that our study provides critical insights into the oligomerization of NS1 and will aid the development of NS1-based diagnoses and therapies.


Asunto(s)
Microscopía por Crioelectrón , Multimerización de Proteína , Proteínas no Estructurales Virales , Virus de la Fiebre Amarilla , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus de la Fiebre Amarilla/química , Modelos Moleculares , Humanos , Conformación Proteica
6.
Viruses ; 16(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39205212

RESUMEN

Infections with Flaviviridae viruses, such as hepatitis C (HCV), dengue (DENV), and yellow fever (YFV) viruses, are major public health problems worldwide. In the case of HCV, treatment is associated with drug resistance and high costs, while there is no clinically approved therapy for DENV and YFV. Consequently, there is still a need for new chemotherapies with alternative modes of action. We have previously identified novel 2-hydroxypyrazino[1,2-a]indole-1,3(2H,4H)-diones as metal-chelating inhibitors targeting HCV RNA replication. Here, by utilizing a structure-based approach, we rationally designed a second series of compounds by introducing various substituents at the indole core structure and at the imidic nitrogen, to improve specificity against the RNA-dependent RNA polymerase (RdRp). The resulting derivatives were evaluated for their potency against HCV genotype 1b, DENV2, and YFV-17D using stable replicon cell lines. The most favorable substitution was nitro at position 6 of the indole ring (compound 36), conferring EC50 1.6 µM against HCV 1b and 2.57 µΜ against HCV 1a, with a high selectivity index. Compound 52, carrying the acetohydroxamic acid functionality (-CH2CONHOH) on the imidic nitrogen, and compound 78, the methyl-substituted molecule at the position 4 indolediketopiperazine counterpart, were the most effective against DENV and YFV, respectively. Interestingly, compound 36 had a high genetic barrier to resistance and only one resistance mutation was detected, T181I in NS5B, suggesting that the compound target HCV RdRp is in accordance with our predicted model.


Asunto(s)
Antivirales , Hepacivirus , Indoles , Replicación Viral , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Humanos , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepacivirus/fisiología , Indoles/farmacología , Indoles/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Línea Celular , Flaviviridae/efectos de los fármacos , Flaviviridae/genética , Relación Estructura-Actividad , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Virus de la Fiebre Amarilla/efectos de los fármacos , Virus de la Fiebre Amarilla/genética
7.
Cell Host Microbe ; 32(9): 1579-1593.e8, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39094585

RESUMEN

Viral genomes are enriched with G-quadruplexes (G4s), non-canonical structures formed in DNA or RNA upon assembly of four guanine stretches into stacked quartets. Because of their critical roles, G4s are potential antiviral targets, yet their function remains largely unknown. Here, we characterize the formation and functions of a conserved G4 within the polymerase coding region of orthoflaviviruses of the Flaviviridae family. Using yellow fever virus, we determine that this G4 promotes viral replication and suppresses host stress responses via interactions with hnRNPH1, a host nuclear protein involved in RNA processing. G4 binding to hnRNPH1 causes its cytoplasmic retention with subsequent impacts on G4-containing tRNA fragments (tiRNAs) involved in stress-mediated reductions in translation. As a result, these host stress responses and associated antiviral effects are impaired. These data reveal that the interplay between hnRNPH1 and both host and viral G4 targets controls the integrated stress response and viral replication.


Asunto(s)
G-Cuádruplex , Estrés Fisiológico , Replicación Viral , Animales , Humanos , Genoma Viral , Células HEK293 , Interacciones Huésped-Patógeno , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/fisiología
8.
Cell Rep Med ; 5(7): 101655, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019010

RESUMEN

Yellow fever virus (YFV) is endemic in >40 countries and causes viscerotropic disease with up to 20%-60% mortality. Successful live-attenuated yellow fever (YF) vaccines were developed in the mid-1930s, but their use is restricted or formally contraindicated in vulnerable populations including infants, the elderly, and people with compromised immune systems. In these studies, we describe the development of a next-generation hydrogen peroxide-inactivated YF vaccine and determine immune correlates of protection based on log neutralizing index (LNI) and neutralizing titer-50% (NT50) studies. In addition, we compare neutralizing antibody responses and protective efficacy of hydrogen peroxide-inactivated YF vaccine candidates to live-attenuated YFV-17D (YF-VAX) in a rhesus macaque model of viscerotropic YF. Our results indicate that an optimized, inactivated YF vaccine elicits protective antibody responses that prevent viral dissemination and lethal infection in rhesus macaques and may be a suitable alternative for vaccinating vulnerable populations who are not eligible to receive replicating live-attenuated YF vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Peróxido de Hidrógeno , Macaca mulatta , Vacunas de Productos Inactivados , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Vacunas de Productos Inactivados/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas Atenuadas/inmunología , Chlorocebus aethiops , Células Vero , Humanos
9.
Viruses ; 16(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39066208

RESUMEN

Little is known about the frequency of Zika virus (ZIKV) infections in Sudan. The aim of this study was to obtain data on the prevalence of ZIKV infections and the immunity of the population in the country. To this end, 198 sera obtained between December 2012 and January 2013 in different regions in Sudan were examined for neutralizing antibodies against ZIKV, dengue virus (DENV), and yellow fever virus (YFV). The sera were non-randomly selected. The neutralization titers were compared with each other and with the WHO 1st International Standard for anti-Asian lineage Zika virus antibody. Twenty-six sera neutralized ZIKV. One-third of these sera had higher neutralization titers against ZIKV than against DENV-2 and -3. Two sera showed higher neutralization titers than the WHO standard for ZIKV antibodies. These data suggest occasional ZIKV infections in Sudan. The low percentage of sera in this cohort that neutralized ZIKV indicates that, in the study period, the population was susceptible to ZIKV infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección por el Virus Zika , Virus Zika , Sudán/epidemiología , Humanos , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/sangre , Anticuerpos Antivirales/sangre , Virus Zika/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adulto , Femenino , Masculino , Persona de Mediana Edad , Adulto Joven , Adolescente , Pruebas de Neutralización , Virus del Dengue/inmunología , Niño , Virus de la Fiebre Amarilla/inmunología , Estudios Seroepidemiológicos , Preescolar , Anciano , Prevalencia
10.
J Infect Dis ; 230(1): e60-e64, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052712

RESUMEN

In 2018 there was a large yellow fever outbreak in São Paulo, Brazil, with a high fatality rate. Yellow fever virus can cause, among other symptoms, hemorrhage and disseminated intravascular coagulation, indicating a role for endothelial cells in disease pathogenesis. Here, we conducted a case-control study and measured markers related to endothelial damage in plasma and its association with mortality. We found that angiopoietin 2 is strongly associated with a fatal outcome and could serve as a predictive marker for mortality. This could be used to monitor severe cases and provide care to improve disease outcome.


Asunto(s)
Angiopoyetina 2 , Biomarcadores , Fiebre Amarilla , Virus de la Fiebre Amarilla , Humanos , Estudios de Casos y Controles , Fiebre Amarilla/mortalidad , Fiebre Amarilla/sangre , Fiebre Amarilla/virología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Angiopoyetina 2/sangre , Biomarcadores/sangre , Brasil/epidemiología , Anciano , Adulto Joven
11.
BMC Infect Dis ; 24(1): 731, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054464

RESUMEN

BACKGROUND: In late 2021, Ghana was hit by a Yellow Fever outbreak that started in two districts in the Savannah region and spread to several other Districts in three regions. Yellow fever is endemic in Ghana. However, there is currently no structured vector control programme for Aedes the arboviral vector in Ghana. Knowledge of Aedes bionomics and insecticide susceptibility status is important to control the vectors. This study therefore sought to determine Aedes vector bionomics and their insecticide resistance status during a yellow fever outbreak. METHODS: The study was performed in two yellow fever outbreak sites (Wenchi, Larabanga) and two non-outbreak sites (Kpalsogu, Pagaza) in Ghana. Immature Aedes mosquitoes were sampled from water-holding containers in and around human habitations. The risk of disease transmission was determined in each site using stegomyia indices. Adult Aedes mosquitoes were sampled using Biogents Sentinel (BG) traps, Human Landing Catch (HLC), and Prokopack (PPK) aspirators. Phenotypic resistance to permethrin, deltamethrin and pirimiphos-methyl was determined with WHO susceptibility tests using Aedes mosquitoes collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific multiplex PCR. RESULTS: Among the 2,664 immature Aedes sampled, more than 60% were found in car tyres. Larabanga, an outbreak site, was classified as a high-risk zone for the Yellow Fever outbreak (BI: 84%, CI: 26.4%). Out of 1,507 adult Aedes mosquitoes collected, Aedes aegypti was the predominant vector species (92%). A significantly high abundance of Aedes mosquitoes was observed during the dry season (61.2%) and outdoors (60.6%) (P < 0.001). Moderate to high resistance to deltamethrin was observed in all sites (33.75% to 70%). Moderate resistance to pirimiphos-methyl (65%) was observed in Kpalsogu. Aedes mosquitoes from Larabanga were susceptible (98%) to permethrin. The F1534C kdr, V1016I kdr and V410 kdr alleles were present in all the sites with frequencies between (0.05-0.92). The outbreak sites had significantly higher allele frequencies of F1534C and V1016I respectively compared to non-outbreak sites (P < 0.001). CONCLUSION: This study indicates that Aedes mosquitoes in Ghana pose a significant risk to public health. Hence there is a need to continue monitoring these vectors to develop an effective control strategy.


Asunto(s)
Aedes , Brotes de Enfermedades , Resistencia a los Insecticidas , Insecticidas , Mosquitos Vectores , Fiebre Amarilla , Animales , Aedes/virología , Aedes/efectos de los fármacos , Aedes/genética , Ghana/epidemiología , Resistencia a los Insecticidas/genética , Fiebre Amarilla/transmisión , Fiebre Amarilla/epidemiología , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Humanos , Insecticidas/farmacología , Femenino , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/efectos de los fármacos
12.
Hum Vaccin Immunother ; 20(1): 2318814, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38961639

RESUMEN

The present study aimed at investigating whether the hydroxychloroquine (HCQ) treatment would impact the neutralizing antibody production, viremia levels and the kinetics of serum soluble mediators upon planned 17DD-Yellow Fever (YF) primovaccination (Bio-Manguinhos-FIOCRUZ) of primary Sjögren's syndrome (pSS). A total of 34 pSS patients and 23 healthy controls (HC) were enrolled. The pSS group was further categorized according to the use of HCQ (HCQ and Non-HCQ). The YF-plaque reduction neutralization test (PRNT ≥1:50), YF viremia (RNAnemia) and serum biomarkers analyses were performed at baseline and subsequent time-points (Day0/Day3-4/Day5-6/Day7/Day14-D28). The pSS group showed PRNT titers and seropositivity rates similar to those observed for HC (GeoMean = 238 vs 440, p = .11; 82% vs 96%, p = .13). However, the HCQ subgroup exhibited lower seroconversion rates as compared to HC (GeoMean = 161 vs 440, p = .04; 69% vs 96%, p = .02) and Non-HQC (GeoMean = 161 vs 337, p = .582; 69% vs 94%, p = .049). No differences in YF viremia were observed amongst subgroups. Serum biomarkers analyses demonstrated that HCQ subgroup exhibited increased levels of CCL2, CXL10, IL-6, IFN-γ, IL1-Ra, IL-9, IL-10, and IL-2 at baseline and displayed a consistent increase of several biomarkers along the kinetics timeline up to D14-28. These results indicated that HCQ subgroup exhibited a deficiency in assembling YF-specific immune response elicited by 17DD-YF primovaccination as compared to Non-HCQ subgroup. Our findings suggested that hydroxychloroquine is associated with a decrease in the humoral immune response after 17DD-YF primovaccination.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Hidroxicloroquina , Seroconversión , Síndrome de Sjögren , Fiebre Amarilla , Humanos , Hidroxicloroquina/uso terapéutico , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/inmunología , Femenino , Persona de Mediana Edad , Masculino , Adulto , Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Vacuna contra la Fiebre Amarilla/inmunología , Anciano , Viremia/tratamiento farmacológico , Viremia/inmunología , Virus de la Fiebre Amarilla/inmunología , Citocinas/sangre , Biomarcadores/sangre
13.
Vaccine ; 42(25): 126045, 2024 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38852036

RESUMEN

Yellow fever (YF) is a disease caused by the homonymous flavivirus that can be prevented by a vaccine containing attenuated viruses. Since some individuals cannot receive this vaccine, the development of alternatives is desirable. Here, we developed a recombinant baculovirus (rBV) surface display platform utilizing a chimeric E-NS1 protein as a vaccine candidate. A pBacPAK9 vector containing the baculoviral GP64 signal peptide, the YFV prM, E, NS1 and the ectodomain of VSV-G sequences was synthesized. This transfer plasmid and the bAcGOZA bacmid were cotransfected into Sf9 cells, and an rBV-E-NS1 was obtained, which was characterized by PCR, WB, IFI and FACS analysis. Mice immunized with rBV-E-NS1 elicited a specific humoral and cellular immune response and were protected after YFV infection. In summary, we have developed an rBV that expresses YFV major antigen proteins on its surface, which opens new alternatives that can be tested in a mouse model.


Asunto(s)
Anticuerpos Antivirales , Baculoviridae , Proteínas no Estructurales Virales , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Baculoviridae/genética , Baculoviridae/inmunología , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Virus de la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/genética , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Células Sf9 , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Femenino , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/genética , Inmunidad Celular , Ratones Endogámicos BALB C , Inmunidad Humoral , Vectores Genéticos/genética
14.
JCI Insight ; 9(14)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861490

RESUMEN

Memory T cells are conventionally associated with durable recall responses. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found CD45RO-CCR7+ virus-specific CD4+ T cells that expanded shortly after vaccination and persisted months to years after immunization. Further phenotypic analyses revealed the presence of stem cell-like memory T cells within this subset. In addition, after vaccination T cells lacking known memory markers and functionally resembling genuine naive T cells were identified, referred to herein as marker-negative T (TMN) cells. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified TMN TCRs shared with memory and effector T cells. Longitudinal tracking of YFV-specific responses over subsequent years revealed superior stability of TMN cells, which correlated with the longevity of the overall tetramer+ population. These findings uncover additional complexity within the post-immune T cell compartment and implicate TMN cells in durable immune responses.


Asunto(s)
Linfocitos T CD4-Positivos , Células T de Memoria , Vacunación , Vacuna contra la Fiebre Amarilla , Humanos , Linfocitos T CD4-Positivos/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Células T de Memoria/inmunología , Virus de la Fiebre Amarilla/inmunología , Masculino , Femenino , Memoria Inmunológica/inmunología , Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Adulto , Estudios Longitudinales , Fenotipo
15.
Vaccine ; 42(24): 126083, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38926068

RESUMEN

A single dose of standard yellow fever (YF) vaccine is considered to provide life-long protection. In this study, we evaluate the seropositivity conferred by lower doses 10 years post-vaccination. In 2009, Bio-Manguinhos/Fiocruz performed a dose-response study with the 17DD yellow fever vaccine, administering the vaccine in the usual mean dose of 27.476 IU and in decreasing doses (10.447 IU, 3.013 IU, 587 IU, 158 IU and 31 IU), with the usual volume and route (0,5 ml subcutaneous). The decreasing doses were obtained by dilution in the laboratory of the manufacturer and the lots in test had standard quality control and were produced by good manufacturing practices (GMP). Around 30 days after the vaccination, doses down to 587 IU had similar immunogenicity and the 158 IU and 31 IU were inferior to the full dose. The seropositivity was maintained for 10 months, except on the 31 IU group. Eight years after, 85 % of 318 participants evaluated in a follow-up, maintained seropositivity that was similar across groups. Consistently, antibody titers in the reduced-dose groups were also comparable to those of the full-dose group. The current study, 10 years later, showed similarity between the vaccine groups (six arms who received the YF vaccine in decreasing doses: 27.476 IU, 10.447 IU, 3.013 IU, 587 IU, 158 IU, 31 IU) both in relation of seropositivity and in the evaluation of the geometric mean titers. The seropositivity rates across subgroups were 83,1%, 90 %, 87 %, 93 %, 83,8% and 85 %, correspondingly. These findings provides further support to the long-term immunogenicity of lower doses. Clinical trial registry: NCT04416477.


Asunto(s)
Anticuerpos Antivirales , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Humanos , Vacuna contra la Fiebre Amarilla/inmunología , Vacuna contra la Fiebre Amarilla/administración & dosificación , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Masculino , Femenino , Adulto , Factores de Tiempo , Vacunación/métodos , Persona de Mediana Edad , Adulto Joven , Relación Dosis-Respuesta Inmunológica , Inmunogenicidad Vacunal , Voluntarios Sanos , Virus de la Fiebre Amarilla/inmunología , Estudios de Seguimiento
16.
PLoS Negl Trop Dis ; 18(6): e0012264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900788

RESUMEN

Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.


Asunto(s)
Desinfectantes , Inactivación de Virus , Organización Mundial de la Salud , Virus de la Fiebre Amarilla , Virus de la Fiebre Amarilla/efectos de los fármacos , Desinfectantes/farmacología , Inactivación de Virus/efectos de los fármacos , Humanos , Fiebre Amarilla/prevención & control , Fiebre Amarilla/transmisión , Fiebre Amarilla/virología , Desinfección de las Manos/métodos , Animales , Chlorocebus aethiops
17.
Pan Afr Med J ; 47: 120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828420

RESUMEN

Introduction: Aedes albopictus, like Aedes aegypti, is a virulent vector of arboviruses especially the well-documented spread of yellow fever around the world. Although yellow fever is prevalent in Nigeria, there is a paucity of information in the Niger Delta region on the distribution of Aedes mosquito vectors and molecular detection of the virus in infected mosquitoes. This study sampled Aedes mosquitoes around houses associated with farms from four communities (Otolokpo, Ute-Okpu, Umunede, and Ute Alohen) in Ika North-East Local Government Area of Delta State, Nigeria. Methods: various sampling methods were used in Aedes mosquito collection to test their efficacy in the survey. Mosquitoes in holding cages were killed by freezing and morphologically identified. A pool of 15 mosquitoes per Eppendorf tube was preserved in RNAi later for yellow fever virus screening. Two samples were molecularly screened for each location. Results: seven hundred and twenty-five (725) mosquitoes were obtained from the various traps. The mean abundance of the mosquitoes was highest in m-HLC (42.9) compared to the mosquitoes sampled using other techniques (p<0.0001). The mean abundance of mosquitoes was lowest in Center for Disease Control (CDC) light traps without attractant (0.29). No yellow fever virus strain was detected in all the mosquitoes sampled at the four locations. Conclusion: this study suggests that Aedes albopictus are the mosquitoes commonly biting around houses associated with farms. More so, yellow fever virus was not detected in the mosquitoes probably due to the mass vaccination exercise that was carried out the previous year in the study area. More studies are required using the m-HLC to determine the infection rate in this endemic area.


Asunto(s)
Aedes , Mosquitos Vectores , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Aedes/virología , Nigeria , Virus de la Fiebre Amarilla/aislamiento & purificación , Mosquitos Vectores/virología , Fiebre Amarilla/transmisión , Fiebre Amarilla/epidemiología , Fiebre Amarilla/virología , Humanos
18.
Viruses ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932129

RESUMEN

The complete lack of yellow fever virus (YFV) in Asia, and the lack of urban YFV transmission in South America, despite the abundance of the peridomestic mosquito vector Aedes (Stegomyia.) aegypti is an enigma. An immunologically naïve population of over 2 billion resides in Asia, with most regions infested with the urban YF vector. One hypothesis for the lack of Asian YF, and absence of urban YF in the Americas for over 80 years, is that prior immunity to related flaviviruses like dengue (DENV) or Zika virus (ZIKV) modulates YFV infection and transmission dynamics. Here we utilized an interferon α/ß receptor knock-out mouse model to determine the role of pre-existing dengue-2 (DENV-2) and Zika virus (ZIKV) immunity in YF virus infection, and to determine mechanisms of cross-protection. We utilized African and Brazilian YF strains and found that DENV-2 and ZIKV immunity significantly suppresses YFV viremia in mice, but may or may not protect relative to disease outcomes. Cross-protection appears to be mediated mainly by humoral immune responses. These studies underscore the importance of re-assessing the risks associated with YF outbreak while accounting for prior immunity from flaviviruses that are endemic.


Asunto(s)
Protección Cruzada , Virus del Dengue , Modelos Animales de Enfermedad , Ratones Noqueados , Receptor de Interferón alfa y beta , Fiebre Amarilla , Virus de la Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/virología , Ratones , Protección Cruzada/inmunología , Virus de la Fiebre Amarilla/inmunología , Virus Zika/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/virología , Virus del Dengue/inmunología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/deficiencia , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Flavivirus/inmunología , Aedes/virología , Aedes/inmunología , Dengue/inmunología , Dengue/prevención & control , Dengue/virología , Femenino , Viremia/inmunología , Mosquitos Vectores/virología , Mosquitos Vectores/inmunología , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/prevención & control , Infecciones por Flavivirus/virología , Ratones Endogámicos C57BL
19.
Antimicrob Agents Chemother ; 68(7): e0016824, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38809067

RESUMEN

Zika virus (ZIKV) is one of the mosquito-borne flaviviruses that exhibits a unique tropism to nervous systems and is associated with Guillain-Barre syndrome and congenital Zika syndrome (CZS). Dengue virus (DENV) and yellow fever virus (YFV), the other two mosquito-borne flaviviruses, have also been circulating for a long time and cause severe diseases, such as dengue hemorrhagic fever and yellow fever, respectively. However, there are no safe and effective antiviral drugs approved for the treatment of infections or coinfections of these flaviviruses. Here, we found that zafirlukast, a pregnancy-safe leukotriene receptor antagonist, exhibited potent antiviral activity against infections of ZIKV strains from different lineages in different cell lines, as well as against infections of DENV-2 and YFV 17D. Mechanistic studies demonstrated that zafirlukast directly and irreversibly inactivated these flaviviruses by disrupting the integrity of the virions, leading to the loss of viral infectivity, hence inhibiting the entry step of virus infection. Considering its efficacy against flaviviruses, its safety for pregnant women, and its neuroprotective effect, zafirlukast is a promising candidate for prophylaxis and treatment of infections or coinfections of ZIKV, DENV, and YFV, even in pregnant women.


Asunto(s)
Antivirales , Virus del Dengue , Indoles , Sulfonamidas , Virus de la Fiebre Amarilla , Virus Zika , Virus Zika/efectos de los fármacos , Humanos , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Animales , Virus de la Fiebre Amarilla/efectos de los fármacos , Indoles/farmacología , Sulfonamidas/farmacología , Chlorocebus aethiops , Células Vero , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología , Línea Celular , Fenilcarbamatos
20.
Artículo en Inglés | MEDLINE | ID: mdl-38791823

RESUMEN

In the Americas, wild yellow fever (WYF) is an infectious disease that is highly lethal for some non-human primate species and non-vaccinated people. Specifically, in the Brazilian Atlantic Forest, Haemagogus leucocelaenus and Haemagogus janthinomys mosquitoes act as the major vectors. Despite transmission risk being related to vector densities, little is known about how landscape structure affects vector abundance and movement. To fill these gaps, we used vector abundance data and a model-selection approach to assess how landscape structure affects vector abundance, aiming to identify connecting elements for virus dispersion in the state of São Paulo, Brazil. Our findings show that Hg. leucocelaenus and Hg. janthinomys abundances, in highly degraded and fragmented landscapes, are mainly affected by increases in forest cover at scales of 2.0 and 2.5 km, respectively. Fragmented landscapes provide ecological corridors for vector dispersion, which, along with high vector abundance, promotes the creation of risk areas for WYF virus spread, especially along the border with Minas Gerais state, the upper edges of the Serra do Mar, in the Serra da Cantareira, and in areas of the metropolitan regions of São Paulo and Campinas.


Asunto(s)
Mosquitos Vectores , Fiebre Amarilla , Brasil , Animales , Fiebre Amarilla/transmisión , Mosquitos Vectores/virología , Ecosistema , Clima Tropical , Virus de la Fiebre Amarilla , Densidad de Población , Culicidae/virología , Culicidae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA