Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Sci Rep ; 14(1): 18598, 2024 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127765

RESUMEN

Feline mesenchymal stem cells (fMSCs) are well known for their robust differentiation capabilities and are commonly used in studying immune-related diseases in cats. Despite their importance, the susceptibility of fMSCs to viral infections remains uncertain. This study aimed to assess the susceptibility of feline adipose-derived mesenchymal stem cells (fAD-MSCs) and feline umbilical cord-derived mesenchymal stem cells (fUC-MSCs) to common feline viruses, including feline coronavirus (FCoV), feline herpesvirus type 1 (FHV-1), and feline panleukopenia virus (FPV). The results demonstrated that both FCoV and FHV-1 were able to infect both types of cells, while FPV did not exhibit cytopathic effects on fUC-MSCs. Furthermore, all three viruses were successfully isolated from fAD-MSCs. These findings suggest that certain feline viruses can replicate in fMSCs, indicating potential limitations in using fMSCs for treating viral diseases caused by these specific viruses. This study has important clinical implications for veterinarians, particularly in the management of viral diseases.


Asunto(s)
Coronavirus Felino , Células Madre Mesenquimatosas , Animales , Gatos , Células Madre Mesenquimatosas/virología , Células Madre Mesenquimatosas/citología , Coronavirus Felino/fisiología , Virus de la Panleucopenia Felina , Células Cultivadas , Varicellovirus/fisiología , Replicación Viral , Diferenciación Celular , Tejido Adiposo/citología , Enfermedades de los Gatos/virología
2.
Comp Immunol Microbiol Infect Dis ; 111: 102209, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880052

RESUMEN

A retrospective study was carried out on selected feline viral pathogens detected in domestic cat in Sicily, southern Italy. Samples from 64 cats, collected from 2020 to 2022, were analysed for the presence of feline panleukopenia virus, canine parvovirus type 2 (CPV-2), feline coronavirus (FCoV), feline calicivirus (FCV), feline herpesvirus type 1, norovirus (NoV), and rotavirus (RoV). Single (45 %) or mixed (38 %) viral infections were detected. FPV, related with other Italian FPV strains, remains the main viral cause of infection (66 %). CPV-2c Asian lineage strains (3 %) were detected for the first time in domestic cats in Europe. FCoV (29.6 %), either enteric or systemic, and systemic FCV (18.7 %) infections were detected in positive cats. Less commonly reported viruses (GIV.2/GVI.2 NoVs, RoV), potentially related to the animal/human interface, were detected at lower rates as well (5 %). The present epidemiological data suggest the need to improve disease prevention, immunization, and biosecurity strategies.


Asunto(s)
Calicivirus Felino , Enfermedades de los Gatos , Gatos , Animales , Estudios Retrospectivos , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/epidemiología , Sicilia/epidemiología , Calicivirus Felino/aislamiento & purificación , Virosis/epidemiología , Virosis/veterinaria , Virosis/virología , Femenino , Masculino , Virus de la Panleucopenia Felina/aislamiento & purificación , Virus de la Panleucopenia Felina/genética , Coronavirus Felino/aislamiento & purificación , Parvovirus Canino/aislamiento & purificación , Norovirus , Rotavirus/aislamiento & purificación , Heces/virología
3.
Microb Pathog ; 192: 106709, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810766

RESUMEN

This study prepared a novel monoclonal antibody (MAb) against mink enteritis parvovirus (MEV) and identified its antigen epitope. The antibody subclass is identified as IgG1, the titers of the MAb is up to 1:1 × 106 and keeps stably after low-temperature storage for 9 months or 11 passages of the MAb cells. The MAb can specifically recognize MEV in the cells in IFA, but not Aleutian disease virus (ADV) or canine distemper virus (CDV). Its antigen epitope was identified as a polypeptide containing 5 key amino acids (378YAFGR382) and the homology in 20 MEV strains, 4 canine parvovirus strains, and 4 feline panleukopenia virus strains was 100%. This study supplies a biological material for developing new methods to detect MEV.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus del Moquillo Canino , Epítopos , Virus de la Enteritis del Visón , Animales , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Virus de la Enteritis del Visón/inmunología , Virus del Moquillo Canino/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Visón/inmunología , Inmunoglobulina G/inmunología , Virus de la Enfermedad Aleutiana del Visón/inmunología , Parvovirus Canino/inmunología , Virus de la Panleucopenia Felina/inmunología , Mapeo Epitopo , Ratones , Ratones Endogámicos BALB C , Enteritis Viral del Visón/inmunología
4.
J Virol ; 98(5): e0009324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591899

RESUMEN

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Asunto(s)
Virus de la Panleucopenia Felina , Proteínas no Estructurales Virales , Replicación Viral , Animales , Gatos , Línea Celular , Virus de la Panleucopenia Felina/genética , Virus de la Panleucopenia Felina/inmunología , Inmunidad Innata , Mutación , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/inmunología
5.
Pol J Microbiol ; 73(1): 39-48, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437470

RESUMEN

Feline parvovirus (FPV) is highly infectious for cats and other Felidae and often causes severe damage to young kittens. In this study, we incorporated recombinase polymerase amplification (RPA) and Cas12a-mediated detection and developed an RPA-Cas12a-based real-time or end-point fluorescence detection method to identify the NS1 gene of FPV. The total time of RPA-Cas12a-based fluorescence assay is approximately 25 min. The assay presented a limit of detection (LOD) of 1 copies/µl (25 copies/per reaction), with no cross-reactivity with several feline pathogens. The clinical performance of the assay was examined using total genomic DNA purified from 60 clinical specimens and then compared to results obtained with qPCR detection of FPV with 93.3% positive predictive agreement and 100% negative predictive agreement. Together, the rapid reaction, cost-effectiveness, and high sensitivity make the RPA-Cas12a-based fluorescence assay a fascinating diagnostic tool that will help minimize infection spread through instant detection of FPV.


Asunto(s)
Virus de la Panleucopenia Felina , Recombinasas , Gatos , Animales , Femenino , Sistemas CRISPR-Cas , Límite de Detección
6.
Res Vet Sci ; 170: 105186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368749

RESUMEN

Feline parvovirus (FPV) and canine parvovirus (CPV) are over 98% identical in their DNA sequences, and the new variants of CPV (2a/2b/2c) have gained the ability to infect and replicate in cats. The aim of this study was to determine the genetic diversity in the VP2 gene of parvovirus strains circulating in domestic cats in Brazil during a 10-year period (2008-2017). For parvovirus screening, specific PCR was performed, and 25 (34.7%) of 72 cats tested positive. The PCR-positive samples were further subjected to full-length VP2 sequencing (1755 bp), and eight sequences (36%) were characterized as FPV, seven (28%) as CPV-2a and (32%) nine (36%) as CPV-2b. One sequence (RJ1085/11) showing typical CPV amino acid (aa) at residues 80 R, 93 N, 103 A, 232 I, and 323 N could not be characterized at this time. The sequences in this study displayed aa changes previously described for FPV (A14T, A91S, I101T, N564S, and A568G) from cats and CPV-2a/2b (S297N and Y324L) from dogs. However, the Y324L mutation has not yet been reported in any CPV-2a/2b strains from cats. Phylogenetic analysis supported the division of these sequences into two well-defined clades, clade 1 for FPV and clade 2 for CPV2a/2b. Unusually, the sequence RJ1085/11 was grouped separately. Two recombination breakpoints were detected by Bootscan and 3Seq methods implemented in the RDP4. This study is the first report of CPV-2a/2b in cats in Brazil. The detection of FPV strains with mutations characteristic of CPV indicates that Brazilian FPV strains have undergone genetic changes.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Infecciones por Parvoviridae , Parvovirus Canino , Gatos , Animales , Perros , Brasil/epidemiología , Filogenia , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria , Virus de la Panleucopenia Felina/genética , Parvovirus Canino/genética , Enfermedades de los Gatos/epidemiología
7.
Vet Microbiol ; 290: 109978, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185071

RESUMEN

Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies. Therefore, to develop a bivalent vaccine against FPV and FHV-1, we first generated a novel recombinant virus by CRISPR/Cas9-mediated homologous recombination, WH2020-ΔTK/gI/gE-VP2, which expresses the VP2 protein of FPV. The growth characteristics of WH2020-ΔTK/gI/gE-VP2 were similar to those of WH2020-ΔTK/gI/gE, and WH2020-ΔTK/gI/gE-VP2 was stable for at least 30 generations in CRFK cells. As expected, we found that the felines immunized with WH2020-ΔTK/gI/gE-VP2 produced FPV-neutralizing antibody titers (27.5) above the positive cutoff (26) on day 14 after single inoculation. More importantly, recombinant WH2020-ΔTK/gI/gE-VP2 exhibited severely impaired pathogenicity in inoculated and cohabiting cats. The kittens immunized with WH2020-ΔTK/gI/gE and WH2020-ΔTK/gI/gE-VP2 produced similar levels of FHV-specific antibodies and IFN-ß. Furthermore, felines immunized with WH2020-ΔTK/gI/gE-VP2 were protected against challenge with FPV and FHV-1. These data showed that WH2020-ΔTK/gI/gE-VP2 appears to be a potentially safe, effective, and economical bivalent vaccine against FPV and FHV-1 and that WH2020-ΔTK/gI/gE can be used as a viral vector to develop feline multivalent vaccines.


Asunto(s)
Varicellovirus , Vacunas Virales , Animales , Gatos , Femenino , Virus de la Panleucopenia Felina/genética , Varicellovirus/genética , Anticuerpos Neutralizantes , Vacunas Combinadas , Anticuerpos Antivirales
8.
J Virol Methods ; 325: 114870, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086433

RESUMEN

Canine parvovirus is a highly contagious pathogen affecting domestic dogs and other carnivores globally. Monitoring CPV through continuous genomic surveillance is crucial for mapping variability and developing effective control measures. Here, we developed a method using multiplex-PCR-next-generation sequencing to obtain full-length CPV genomes directly from clinical samples. This approach utilizes tiling and tailed amplicons to amplify overlapping fragments of roughly 250 base pairs. This enables the creation of Illumina libraries by conducting two PCR reaction runs. We tested the assay in 10 fecal samples from dogs diagnosed with CPV and one CPV-2 vaccine strain. Furthermore, we applied it to a feline sample previously diagnosed with the feline panleukopenia virus. The assay provided 100 % genome coverage and high sequencing depth across all 12 samples. It successfully provided the sequence of the coding regions and the left and right non-translated regions, including tandem and terminal repeats. The assay effectively amplified viral variants from divergent evolutionary groups, including the antigenic variants (2a, 2b, and 2c) and the ancestral CPV-2 strain included in vaccine formulations. Moreover, it successfully amplified the entire genome of the feline panleukopenia virus found in cat feces. This method is cost-effective, time-efficient, and does not require lab expertise in Illumina library preparation. The multiplex-PCR-next-generation methodology facilitates large-scale genomic sequencing, expanding the limited number of complete genomes currently available in databases and enabling real-time genomic surveillance. Furthermore, the method helps identify and track emerging CPV viral variants, facilitating molecular epidemiology and control. Adopting this approach can enhance our understanding of the evolution and genetic diversity of Protoparvovirus carnivoran1.


Asunto(s)
Enfermedades de los Perros , Infecciones por Parvoviridae , Parvovirus Canino , Vacunas , Gatos , Animales , Perros , Parvovirus Canino/genética , Infecciones por Parvoviridae/diagnóstico , Virus de la Panleucopenia Felina/genética , Variación Antigénica , Enfermedades de los Perros/diagnóstico , Filogenia
9.
Acta Trop ; 250: 107108, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145830

RESUMEN

Parvoviruses are a major cause of haemorrhagic gastroenteritis, leukopenia and high mortality in cats and dogs. In this study, the presence and genetic characteristics of parvoviruses circulating among cats in Nigeria are reported. Faecal samples of stray cats from live animal markets in southwestern (Oyo and Osun States) and north-central (Kwara State) Nigeria were screened for the presence of parvoviral DNA using a qPCR. Positive samples were further characterized using a qPCR based on minor groove binder probes. Overall, 85/102 (83.3 %) stray cats tested positive for feline panleukopenia virus (FPV) DNA and one cat was co-infected with canine parvovirus-2 type a. Sequence analysis of the complete capsid region of 15 Nigerian FPV strains revealed that they were up to 99.9 % similar to the American reference strain FPV-b at the nucleotide level, and three of them presented amino acid mutations in key capsid residues. This is the first report of identification and molecular characterization of FPV strains in cats in Nigeria. The high prevalence of the virus emphasizes the need for constant surveillance of the circulation of parvoviruses in Nigeria and underscores the need to deploy an effective vaccination strategy.


Asunto(s)
Panleucopenia Felina , Parvovirus Canino , Parvovirus , Animales , Gatos , Perros , Panleucopenia Felina/epidemiología , Parvovirus Canino/genética , Nigeria/epidemiología , Filogenia , Parvovirus/genética , Virus de la Panleucopenia Felina/genética , ADN
10.
Arch Virol ; 169(1): 11, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102389

RESUMEN

Feline panleukopenia, caused by feline parvovirus (FPV), has been studied worldwide, but there have been very few studies conducted in Vietnam. In this study, 19 rectal swab samples were collected from northern Vietnam in 2018-2019 and screened for the presence of FPV using PCR. Through sequence analysis of the full-length VP2 gene, it was found that the FPV strains detected in Vietnam were closely related to those obtained from dogs in Vietnam, Asia, Europe, and America. Moreover, the FPV strains found in Vietnam may constitute a distinct group, related to viruses sampled in China. Interestingly, most of the nucleotide changes identified were T-C substitutions.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus Canino , Gatos , Animales , Perros , Virus de la Panleucopenia Felina/genética , Parvovirus Canino/genética , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria , Vietnam/epidemiología , Variación Genética
11.
PLoS One ; 18(10): e0282559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37862355

RESUMEN

Feline panleukopenia (FPL) is a highly contagious cat disease and is endemic in Bangladesh. The study aims to describe the epidemiology and molecular characterization of the Feline panleukopenia virus from the suspected domestic cats in selected Bangladesh regions. Randomly, 161 rectal swabs were collected from the pet hospitals between July 2021 and December 2022. A structured questionnaire was administered through face-to-face interviews with cat owners in order to collect data on potential risk factors for FPL, such as age, sex, sharing litter boxes and every day utensils in multicat households, vaccination history, hospital visits for other diseases, and season. The rectal swabs were tested by PCR targeting the VP2 capsid protein gene, and six PCR-positive samples were further sequenced for molecular characterizations. The risk factors for FPLV were identified using multivariable logistic regression analysis. The overall prevalence of FPL among suspects was 22.9%. The mortality and case fatality were 10.6%, and 45.9%, respectively. However, mortality in kittens was significantly higher (16.4%) than younger cats. The odds of FPL were 8.83 times (95% CI: 3.14-24.85) higher among unvaccinated cats than vaccinated cats. The winter season had almost six times (95% CI: 1.38-24.40) higher odds of FPL than rainy season. In a multicat house, the odds of FPL was about five times (95% CI: 1.93-13.45) higher for cats that shared a litter box and food utensils compared to those that did not engage in such sharing. Visiting hospitals for other reasons nearly triples the odds of FPL (OR: 2.80, 95% CI: 1.04-7.54) compared to cats that do not visit hospitals. Analysis of partial sequence of the VP2 gene revealed genetic variations among the isolates from different regions. Among these isolates, four were identical to FPLV isolates from South Korea and China, while one showed complete homology with FPLV isolates from Thailand. In contrast, the remaining one was 100% identical to Carnivore protoparvovirus-1 isolated from a feline sample in Italy. Our isolates were classified into three distinct clades alongside Feline panleukopenia virus and Carnivore protoparvovirus-1. One in every three suspected cats was infected with Feline panleukopenia. Regular vaccination of the cats, especially those that share common litter box and food utensils and visit hospitals for other purposes, will help reduce the prevalence of FPL in Bangladesh. Besides, it is worth emphasizing the existence of genetic diversity among the circulating Feline panleukopenia viruses in Bangladesh.


Asunto(s)
Virus de la Panleucopenia Felina , Panleucopenia Felina , Gatos , Animales , Femenino , Virus de la Panleucopenia Felina/genética , Panleucopenia Felina/epidemiología , Bangladesh/epidemiología , Proteínas de la Cápside/genética , Cápside
12.
Front Immunol ; 14: 1237630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662912

RESUMEN

Represented by feline panleukopenia virus (FPV) and canine parvovirus (CPV), the species carnivore protoparvovirus 1 has a worldwide distribution through continuous ci13rculation in companion animals such as cats and dogs. Subsequently, both FPV and CPV had engaged in host-to-host transfer to other wild animal hosts of the order Carnivora. In the present study, we emphasized the significance of cross-species transmission of parvoviruses with the isolation and characterization of an FPV from giant panda displaying severe and fatal symptoms. The isolated virus, designated pFPV-sc, displayed similar morphology as FPV, while phylogenetic analysis indicated that the nucleotide sequence of pFPV-sc clades with Chinese FPV isolates. Despite pFPV-sc is seemingly an outcome of a spillover infection event from domestic cats to giant pandas, our study also provided serological evidence that FPV or other parvoviruses closely related to FPV could be already prevalent in giant pandas in 2011. Initiation of host transfer of pFPV-sc is likely with association to giant panda transferrin receptor (TfR), as TfR of giant panda shares high homology with feline TfR. Strikingly, our data also indicate that pFPV-sc can infect cell lines of other mammal species, including humans. To sum up, observations from this study shall promote future research of cross-host transmission and antiviral intervention of Carnivore protoparvovirus 1, and necessitate surveillance studies in thus far unacknowledged potential reservoirs.


Asunto(s)
Virus de la Panleucopenia Felina , Ursidae , Humanos , Gatos , Animales , Perros , Virus de la Panleucopenia Felina/genética , Filogenia , Animales Salvajes , Tropismo
13.
PLoS One ; 18(8): e0290622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37639436

RESUMEN

Rating prediction is crucial in recommender systems as it enables personalized recommendations based on different models and techniques, making it of significant theoretical importance and practical value. However, presenting these recommendations in the form of lists raises the challenge of improving the list's quality, making it a prominent research topic. This study focuses on enhancing the ranking quality of recommended items in user lists while ensuring interpretability. It introduces fuzzy membership functions to measure user attributes on a multi-dimensional item label vector and calculates user similarity based on these features for prediction and recommendation. Additionally, the user similarity network is modeled to extract community information, leading to the design of a set of corresponding recommendation algorithms. Experimental results on two commonly used datasets demonstrate the effectiveness of the proposed algorithm in enhancing list ranking quality, reducing prediction errors, and maintaining recommendation diversity and accurate user preference classification. This research highlights the potential of integrating heuristic methods with complex network theory and fuzzy techniques to enhance recommendation system performance with interpretability in mind.


Asunto(s)
Algoritmos , Heurística , Virus de la Panleucopenia Felina
14.
Viruses ; 15(6)2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37376637

RESUMEN

Cats harbor many important viral pathogens, and the knowledge of their diversity has been greatly expanded thanks to increasingly popular molecular sequencing techniques. While the diversity is mostly described in numerous regionally defined studies, there lacks a global overview of the diversity for the majority of cat viruses, and therefore our understanding of the evolution and epidemiology of these viruses was generally inadequate. In this study, we analyzed 12,377 genetic sequences from 25 cat virus species and conducted comprehensive phylodynamic analyses. It revealed, for the first time, the global diversity for all cat viruses known to date, taking into account highly virulent strains and vaccine strains. From there, we further characterized and compared the geographic expansion patterns, temporal dynamics and recombination frequencies of these viruses. While respiratory pathogens such as feline calicivirus showed some degree of geographical panmixes, the other viral species are more geographically defined. Furthermore, recombination rates were much higher in feline parvovirus, feline coronavirus, feline calicivirus and feline foamy virus than the other feline virus species. Collectively, our findings deepen the understanding of the evolutionary and epidemiological features of cat viruses, which in turn provide important insight into the prevention and control of cat pathogens.


Asunto(s)
Calicivirus Felino , Enfermedades de los Gatos , Animales , Gatos , Calicivirus Felino/genética , Enfermedades de los Gatos/epidemiología , Virus de la Panleucopenia Felina , Variación Genética
15.
Artículo en Alemán | MEDLINE | ID: mdl-37230115

RESUMEN

Due to widespread vaccination programs against feline panleukopenia virus (FPV), the disease associated with this virus infection, feline panleukopenia, is rarely seen in privately owned cats in Germany. In contrast, the situation in animal shelters differs due to the constant intake of new cats that are often unprotected. In such facilities, panleukopenia outbreaks are common and often accompanied by a high number of fatalities. Due to the high contagiosity of the virus, some shelters do not accept cats with clinical signs suspicious for panleukopenia, since these animals can pose a risk to the shelter population. However, not only cats with panleukopenia shed parvovirus, but also healthy, asymptomatic cats can and thus contribute to risk of infection. Nevertheless, the risk for panleukopenia outbreaks in animal shelters can be reduced by rigorous outbreak management. This includes hygiene measures using correctly applied cleaning and disinfection protocols, quarantine measures, separate isolation units, as well as specific prophylactic measures, such as identification of infected animals and immunization of susceptible groups.


Asunto(s)
Enfermedades de los Gatos , Panleucopenia Felina , Infecciones por Parvoviridae , Virosis , Animales , Gatos , Infecciones por Parvoviridae/veterinaria , Panleucopenia Felina/diagnóstico , Panleucopenia Felina/epidemiología , Panleucopenia Felina/prevención & control , Virus de la Panleucopenia Felina , Virosis/diagnóstico , Virosis/epidemiología , Virosis/prevención & control , Virosis/veterinaria , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/prevención & control
16.
J Vet Sci ; 24(2): e29, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37012037

RESUMEN

BACKGROUND: Feline panleukopenia virus (FPV) is a widespread and highly infectious pathogen in cats with a high mortality rate. Although Yanji has a developed cat breeding industry, the variation of FPV locally is still unclear. OBJECTIVES: This study aimed to isolate and investigate the epidemiology of FPV in Yanji between 2021 and 2022. METHODS: A strain of FPV was isolated from F81 cells. Cats suspected of FPV infection (n = 80) between 2021 and 2022 from Yanji were enrolled in this study. The capsid protein 2 (VP2) of FPV was amplified. It was cloned into the pMD-19T vector and transformed into a competent Escherichia coli strain. The positive colonies were analyzed via VP2 Sanger sequencing. A phylogenetic analysis based on a VP2 coding sequence was performed to identify the genetic relationships between the strains. RESULTS: An FPV strain named YBYJ-1 was successfully isolated. The virus diameter was approximately 20-24 nm, 50% tissue culture infectious dose = 1 × 10-4.94/mL, which caused cytopathic effect in F81 cells. The epidemiological survey from 2021 to 2022 showed that 27 of the 80 samples were FPV-positive. Additionally, three strains positive for CPV-2c were unexpectedly found. Phylogenetic analysis showed that most of the 27 FPV strains belonged to the same group, and no mutations were found in the critical amino acids. CONCLUSIONS: A local FPV strain named YBYJ-1 was successfully isolated. There was no critical mutation in FPV in Yanji, but some cases with CPV-2c infected cats were identified.


Asunto(s)
Enfermedades de los Gatos , Panleucopenia Felina , Animales , Gatos , China/epidemiología , Panleucopenia Felina/epidemiología , Virus de la Panleucopenia Felina/genética , Epidemiología Molecular , Filogenia
17.
BMC Vet Res ; 19(1): 56, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36859281

RESUMEN

BACKGROUND: Feline Panleukopenia is an important disease of cats and has been reported worldwide. The disease is caused by a non-enveloped, single-stranded DNA virus; Feline Panleukopenia Virus (FPLV), belonging to the Parvoviridae family. The disease causes significant mortality in unvaccinated kittens. The disease has been well documented in companion animals. However, only a few reports have surfaced from the wild. CASE PRESENTATION: An orphan leopard cub was presented to Wildlife Rescue Centre, Nagpur, for further care; the leopard was kept under quarantine. On day 22 of the quarantine, the leopard showed inappetence, lethargy and depression and did not consume the offered carabeef (Day 0 of treatment). The leopard was examined clinically and was found to have a temperature of 102°F; blood was collected and analysed. On day one, the leopard exhibited bloody diarrhoea, inappetence, fever and depression. The leopard was rationally treated with fluids, antibiotics, multi-vitamins, haemostatics and haematinics. To gain qualitative insights into the epidemiological aspect of the disease, molecular investigation, including Polymerase Chain Reaction (PCR) and qPCR (Quantitative Polymerase Chain Reaction), were utilized to confirm the infection. The amplicon was sequenced and was found to be similar to sequences of FPLV reported domestic cats and other wild felids from India and abroad. Phylogenetic analysis was performed to understand the evolutionary relationship of the virus with previously reported sequences of FPLV. Sequences were submitted to National Center for Biotechnology Information (NCBI) and were allotted accession numbers. CONCLUSION: The infection in endangered leopard cubs could be managed with prompt fluid therapy, antibiotics and support treatment, ensuring an uneventful recovery. Molecular investigation and sequencing efforts can provide valuable data on epidemiology and the evolutionary relationship of the virus with the circulating strains in the field. The study has implications in the preventive management of FPLV in captivity and the selection of strains for inclusion in vaccines meant for the wild felids.


Asunto(s)
Enfermedades de los Gatos , Panleucopenia Felina , Panthera , Gatos , Animales , Femenino , Filogenia , Virus de la Panleucopenia Felina , Antibacterianos
18.
J Zoo Wildl Med ; 54(1): 185-191, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36971644

RESUMEN

Protective antibody titers against core vaccines have not been standardized for cheetahs (Acinonyx jubatus) under human care. Vaccine-induced disease has been suspected after administration of modified live virus vaccine (MLVV), but it has not been confirmed as the causative agent. MLVV and killed virus vaccines (KVV) elicit humoral response in cheetahs; however, the use of both vaccines for initial immunization in cheetah cubs <6 months old within the same population has not been reported. The current case series describes viral disease presentation in two cheetah litters after using both vaccines and presents results for serum neutralization titers against feline calicivirus (FCV) and feline herpesvirus-1 (FHV-1) and hemagglutination inhibition titers against feline panleukopenia virus (FPV). For Litter 1, MLVV was administered at 6 and 9 wk old. On week 11, one male developed ocular, oral, and dermal lesions. Viral isolation recovered FCV. Because of suspected vaccine-induced FCV, KVV was administered on weeks 13 and 16. Litter 2 was vaccinated with KVV via the same vaccination schedule. Fifty-three days after the last booster, two cubs presented with ocular, respiratory, and oral clinical signs; both were PCR positive for FHV-1. Serology reported a better anamnestic response and protective titers against FCV and FPV with the protocol used with Litter 1. In Litter 2, FCV and FHV-1 titer measurement failed in three of four cubs, limiting comparison of titers between litters. In spite of limited measurements, absence of a statistical evaluation, and presence of infection, serology showed a better humoral response when MLVV was used.


Asunto(s)
Acinonyx , Calicivirus Felino , Enfermedades de los Gatos , Vacunas Atenuadas , Vacunas Virales , Virosis , Animales , Gatos , Humanos , Masculino , Anticuerpos Antivirales , Virus de la Panleucopenia Felina , Vacunas Atenuadas/efectos adversos , Vacunas de Productos Inactivados , Varicellovirus , Vacunas Virales/efectos adversos , Virosis/prevención & control , Virosis/veterinaria
19.
Arch Virol ; 168(4): 126, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36991232

RESUMEN

Feline parvovirus infection, caused by feline parvovirus and canine parvovirus 2, is a highly contagious, life-threatening disease affecting cats. The available epidemiological data on parvovirus infection in cats in Egypt is limited. Therefore, the aim of the current study was to provide data concerning the epidemiological profile of cats infected with parvovirus, including the prevalence of parvovirus infection in cats in three Egyptian provinces (Sohag, Assiut, and Cairo) and the associated risk factors. Using rapid antigen tests of fecal samples and conventional PCR, the overall prevalence of parvovirus infection in cats was found to be 35% (35/100) and 43% (43/100), respectively. Anorexia, bloody diarrhea, severe dehydration, hypothermia, and vomiting were the most common clinical findings significantly associated with parvovirus-infected cats. The geographical location (Sohag) and the season (winter) were both statistically significant risk factors for parvovirus infection. These findings indicate that parvoviruses are circulating in different regions of Egypt. Our study provides baseline epidemiological data for future preventive and control measures against parvovirus infection, as well as highlighting the need for future genomic surveillance studies involving a large study population from various parts of Egypt in order to better shape the epidemiological picture of parvovirus infection.


Asunto(s)
Enfermedades de los Gatos , Panleucopenia Felina , Infecciones por Parvoviridae , Parvovirus Canino , Parvovirus , Humanos , Perros , Animales , Gatos , Virus de la Panleucopenia Felina/genética , Egipto/epidemiología , Parvovirus/genética , Parvovirus Canino/genética , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria
20.
Viruses ; 14(12)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36560617

RESUMEN

The illegal trade of animals poses several health issues to the global community, among which are the underestimated risk for spillover infection and the potential for an epizootic in both wildlife and domestic naïve populations. We herein describe the genetic and antigenic characterization of viruses of the specie Carnivore protoparvovirus 1 detected at high prevalence in puppies illegally introduced in North Eastern Italy and compared them with those circulating in wild carnivores from the same area. We found evidence of a wide diversity of canine parvoviruses (CPV-2) belonging to different antigenic types in illegally imported pups. In wildlife, we found a high circulation of feline parvovirus (FPV) in golden jackals and badgers, whereas CPV-2 was observed in one wolf only. Although supporting a possible spillover event, the low representation of wolf samples in the present study prevented us from inferring the origin, prevalence and viral diversity of the viruses circulating in this species. Therefore, we suggest performing more thorough investigations before excluding endemic CPV-2 circulation in this species.


Asunto(s)
Carnívoros , Infecciones por Parvoviridae , Parvovirus Canino , Parvovirus , Lobos , Gatos , Animales , Perros , Parvovirus Canino/genética , Virus de la Panleucopenia Felina/genética , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria , Parvovirus/genética , Animales Salvajes , Italia/epidemiología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA