Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Nutrients ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125360

RESUMEN

Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial effects. This review examines the impact of Ashwagandha extract on the vascular endothelium, inflammation, lipid metabolism, and cardiovascular outcomes. Studies have shown that Ashwagandha extracts exhibit an anti-angiogenic effect by inhibiting vascular endothelial growth factor (VEGF)-induced capillary sprouting and formation by lowering the mean density of microvessels. Furthermore, the results of numerous studies highlight the anti-inflammatory role of Ashwagandha extract, as the action of this plant causes a decrease in the expression of pro-inflammatory cytokines. Interestingly, withanolides, present in Ashwagandha root, have shown the ability to inhibit the differentiation of preadipocytes into adipocytes. Research results have also proved that W. somnifera demonstrates cardioprotective effects due to its antioxidant properties and reduces ischemia/reperfusion-induced apoptosis. It seems that this plant can be successfully used as a potential treatment for several conditions, mainly those with increased inflammation. More research is needed to elucidate the exact mechanisms by which the substances contained in W. somnifera extracts can act in the human body.


Asunto(s)
Antiinflamatorios , Enfermedades Cardiovasculares , Endotelio Vascular , Inflamación , Metabolismo de los Lípidos , Extractos Vegetales , Withania , Humanos , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Antiinflamatorios/farmacología , Withania/química , Enfermedades Cardiovasculares/tratamiento farmacológico , Animales , Antioxidantes/farmacología
2.
Fitoterapia ; 177: 106124, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996879

RESUMEN

The Solanaceae family and the Withania genus specifically are rich sources of medicinal plants. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS/MS) revealed a predominance of withanolides from an organic extract of Withania obtusifolia. A constructed molecular network uncovered the presence of potentially novel withanolides. A series of withanolides were then isolated and structurally characterized from the extract including two new withanolides (withafolia A and withafolia B) and seven previously reported metabolites. Of the isolated compounds, cytotoxicity of withanolide J, physaperuvin G, and a commercial STAT3 inhibitor (S3I-201) were assessed against a human leukemia HL-60 cell line resulting in IC50 values of 26, 29, and 120 µM, respectively. In silico molecular docking simulations indicate that withanolide J and physaperuvin G can bind as an inhibitor in the active site of STAT3 with docking scores comparable to the selective STAT3 inhibitor, S3I-201.


Asunto(s)
Antineoplásicos Fitogénicos , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT3 , Withania , Witanólidos , Witanólidos/farmacología , Witanólidos/aislamiento & purificación , Witanólidos/química , Factor de Transcripción STAT3/antagonistas & inhibidores , Humanos , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Withania/química , Células HL-60 , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación
3.
Vet Med Sci ; 10(5): e1556, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39078383

RESUMEN

BACKGROUND AND AIM: This study aimed to explore the clinical potential of Withania somnifera/ashwagandha root extract (ARE) to mitigate age-related changes in healthy geriatric dogs. We hypothesized that ARE can reduce the effects of advancing age, including physiological changes, immune response decline and susceptibility to diseases, by its immunomodulatory effects. METHODS: A randomized, double-blind, placebo-controlled trial was conducted in Telangana, India, from July 2022 to September 2022. Twenty apparently healthy dogs, aged 8 years or older, were enrolled. The dogs were divided into two groups to receive ARE (15 mg/kg, once daily, orally) or a placebo control. Various parameters, including serum cortisol levels, haematological profiles, biochemical markers, antioxidant indicators and anti-inflammatory responses, were assessed at the initiation of study, day 30, and day 60. RESULTS: The erythrocyte count and haemoglobin levels were significantly increased with ARE (p < 0.001), whereas leukocyte count decreased (p < 0.05). Moreover, significant decreases in important markers of liver function (alanine aminotransferase, aspartate aminotransferase, albumin and globulin; p < 0.001 at day 60), as well as kidney function markers (creatinine and blood urea nitrogen; p < 0.001 at days 30 and 60), were observed in ARE-treated dogs compared to the placebo control group. In addition, the levels of markers of oxidative stress (superoxide dismutase, catalase, glutathione and malondialdehyde) were significantly modulated by ARE intervention, indicating strong antioxidant effects. Interestingly, serum cortisol levels reduced significantly with ARE (p < 0.001). Compared to baseline, ARE significantly decreased key inflammatory markers, including interferon-γ, tumour necrosis factor-α, nuclear factor kappa light chain enhancer of activated B cells and interleukin-10 (p < 0.001) levels at day 60. CONCLUSION: In conclusion, the findings of this study suggest that ARE has adaptogenic properties in healthy geriatric dogs by improving haematological and biochemical profiles, enhancing antioxidant defence, reducing stress and modulating inflammatory responses.


Asunto(s)
Envejecimiento , Extractos Vegetales , Raíces de Plantas , Withania , Animales , Perros , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Withania/química , Envejecimiento/efectos de los fármacos , Método Doble Ciego , Raíces de Plantas/química , Masculino , Femenino , Distribución Aleatoria
4.
Chem Biol Interact ; 398: 111114, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897341

RESUMEN

Withaferin A, a steroid lactone from Withania somnifera, exhibits anti-inflammatory, immunomodulatory, and antioxidant properties. This study investigated the effects of withaferin A on collagen-induced arthritis (CIA) rats, focusing on NF-κB p65 regulation and cytokine release. Withaferin A (50 mg/kg b.wt., orally) or methotrexate (0.25 mg/kg b.wt., i.p., as a reference drug) was given to CIA rats daily for 20 days postarthritis induction. Joints were removed from nonarthritic and arthritic rats to assess the levels of NO, MPO, interleukin (IL)-1ß, IL-6, IL-10, TNF-α, COX-2, and NF-κB via ELISA. Furthermore, the mRNA expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB was also assessed through qPCR. Treatment with withaferin A significantly inhibited the levels of inflammatory cytokines and the transcription factor NF-κB; suppressed the expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB in the joint tissue of CIA rats; and reduced cartilage and bone destruction, as shown by H&E staining. To confirm the results obtained from biochemical and molecular studies and to determine the molecular target of withaferin A, we performed a molecular simulation of the potential targets of withaferin A, which identified the NF-κB pathway as its target. These results suggested that withaferin A effectively attenuated rheumatoid arthritis progression by inhibiting the activation of the NF-κB pathway and the downstream secretion of inflammatory cytokines.


Asunto(s)
Artritis Experimental , Citocinas , FN-kappa B , Transducción de Señal , Witanólidos , Animales , Witanólidos/farmacología , Witanólidos/uso terapéutico , Ratas , Citocinas/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/patología , FN-kappa B/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratas Wistar , Modelos Animales de Enfermedad , Withania/química
5.
Toxicol Appl Pharmacol ; 489: 117008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908719

RESUMEN

The current study aimed to determine the safety and efficacy of Coag-A through in vivo analysis in CFA induced mice model. Treatment of CFA induced arthritis in mice with Coagulansin-A (10 mg/kg i.p. daily for 28 days), a withanolide obtained from Withania coagulans, as well as standard drug treatment with Dexamethasone (5 mg/kg i.p) was provided. The effect of Coag-A on body weight, relative organ weight, hematology, serum biochemistry, survival rate, oxidative stress markers, and antioxidant enzymes was evaluated. The liver and kidney histopathology were also assessed to ascertain its safety profile. Treatment of arthritic mice with Coag-A considerably improved body weight, relative organ weight of liver, kidney, and spleen, ameliorated hematology and serum biochemistry, and increased survival and antioxidant potential. Coag-A was found to be safer with fewer adverse effects showing hepato-protective, nephroprotective, and anti-inflammatory effect. It also significantly (p < 0.001) improved histopathology of CFA-induced mice when compared with Dexa. In conclusion, compared to dexamethasone, Coag-A has demonstrated a greater therapeutic benefit and fewer side effects in the treatment of arthritis against the CFA-induced model.


Asunto(s)
Artritis Experimental , Animales , Ratones , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/inducido químicamente , Masculino , Witanólidos/farmacología , Witanólidos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dexametasona , Estrés Oxidativo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Withania/química , Femenino
6.
Int Immunopharmacol ; 136: 112232, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815352

RESUMEN

Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.


Asunto(s)
Neoplasias de la Mama , Extractos Vegetales , Withania , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Withania/química , Femenino , Animales , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Fitoterapia
7.
World J Microbiol Biotechnol ; 40(7): 215, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802663

RESUMEN

Withanolides are steroidal lactones with diverse bioactive potential and their production from plant sources varies with genotype, age, culture conditions, and geographical region. Endophytic fungi serve as an alternative source to produce withanolides, like their host plant, Withania somnifera (L.) Dunal. The present study aimed to isolate endophytic fungi capable of producing withanolides, characterization and investigation of biological activities of these molecules. The methanolic fungal crude extract of one of the fungal isolates WSE16 showed maximum withanolide production (219 mg/L). The fungal isolate WSE16 was identified as Penicillium oxalicum based on its morphological and internal transcribed spacer (ITS) sequence analysis and submitted in NCBI (accession number OR888725). The methanolic crude extract of P. oxalicum was further purified by column chromatography, and collected fractions were assessed for the presence of withanolides. Fractions F3 and F4 showed a higher content of withanolides (51.8 and 59.1 mg/L, respectively) than other fractions. Fractions F3 and F4 exhibited antibacterial activity against Staphylococcus aureus with an IC50 of 23.52 and 17.39 µg/ml, respectively. These fractions also showed antioxidant activity (DPPH assay with IC50 of 39.42 and 38.71 µg/ml, superoxide anion scavenging assay with IC50 of 41.10 and 38.84 µg/ml, and reducing power assay with IC50 of 42.61 and 41.40 µg/ml, respectively) and acetylcholinesterase inhibitory activity (IC50 of 30.34 and 22.05 µg/ml, respectively). The withanolides present in fraction 3 and fraction 4 were identified as (20S, 22R)-1a-Acetoxy-27-hydroxywitha-5, 24-dienolide-3b-(O-b-D-glucopyranoside) and withanamide A, respectively, using UV, FTIR, HRMS, and NMR analysis. These results suggest that P. oxalicum, an endophytic fungus isolated from W. somnifera, is a potential source for producing bioactive withanolides.


Asunto(s)
Endófitos , Penicillium , Withania , Witanólidos , Withania/microbiología , Withania/química , Witanólidos/metabolismo , Witanólidos/aislamiento & purificación , Witanólidos/farmacología , Penicillium/metabolismo , Penicillium/genética , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/genética , Endófitos/clasificación , Antioxidantes/farmacología , Antioxidantes/metabolismo , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Antibacterianos/aislamiento & purificación , Filogenia , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/aislamiento & purificación , Pruebas de Sensibilidad Microbiana
8.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732539

RESUMEN

BACKGROUND: Stress is a known causative factor in modulating cognitive health, which overall well-being and quality of life are dependent on. Long-term stress has been shown to disrupt the balance of the hypothalamic-pituitary-adrenal (HPA) axis. Adaptogens, such as Withania somnifera (ashwagandha), are commonly used in Ayurvedic medicine for stress relief and ameliorating HPA-axis dysfunction. The aim of this study was to support the role of a root and leaf water-extracted ashwagandha extract (WS) in stress reduction by confirming the lowest clinically validated dose for stress management (125 mg/day) in a dose-dependent clinical study in adults with self-reported high stress. METHODS: An 8-week, randomized, double-blinded, placebo-controlled study to compare the effects of three different WS extract doses (125, 250 and 500 mg) was performed. A total of 131 adults were enrolled, and 98 were included in the final analysis. Attenuation of chronic stress was measured using the 14-item Perceived Stress Scale (PSS) and biochemical-related stress parameters. RESULTS: We have shown that aqueous WS extract (roots and leaves) safely reduces mild to moderate chronic stress at doses of 125 mg, 250 mg, and 500 mg/day for 8 weeks. CONCLUSIONS: Our findings demonstrate the stress-reduction capabilities of this well-characterized aqueous extract of WS (root and leaf) at the low dose of 125 mg/day, in a dose-dependent manner, via the modulation of the HPA axis. TRIAL REGISTRATION: This study was registered with the Clinical Trials Registry-India (CTRI) with the registration number: CTRI/2019/11/022100.


Asunto(s)
Extractos Vegetales , Hojas de la Planta , Raíces de Plantas , Estrés Psicológico , Withania , Humanos , Withania/química , Extractos Vegetales/farmacología , Masculino , Femenino , Adulto , Método Doble Ciego , Estrés Psicológico/tratamiento farmacológico , Hojas de la Planta/química , Persona de Mediana Edad , Raíces de Plantas/química , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Enfermedad Crónica , Medicina Ayurvédica , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Adulto Joven , Fitoterapia
9.
Steroids ; 207: 109439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740121

RESUMEN

The bushy plant Withania frutescens (L.) Pauquy is well distributed in the West-Mediterranean area, notably in the south of Spain, Algeria and Morocco where is it is used traditionally for the treatment of various human diseases, including diabetes. Unlike the two major species W. somnifera and W. coagulans extensively studied, the genomically close species W. frutescens has been much less investigated. Nevertheless, this shrub species displays a comparable phytochemical profile and marked antioxidant and anti-inflammatory properties, at the origin of reported pharmacological effects and its traditional uses. Here we have analyzed the diversity of biological effects reported with leaves and root extracts of W. frutescens. Hydroalcoholic extracts prepared from the aerial parts of the plant have revealed antihyperglycemic and cell-protective activities along with antimicrobial and anticorrosive effects. The extracts contained diverse polyphenolic compounds and a few alkaloids (calystegines) but most of the observed effects have been attributed to the presence of withanolides which are modified C28 ergostane-type steroids. Our analysis focused in part on specific withanolides found in W. frutescens, in particular an unusual 3-O-sulfated withanolide considered as a potential pro-drug of the major active compound withaferin A (WA) and a lead compound for the development of a potential drug candidate. The mechanism of action of this sulfated WA analogue is discussed. Altogether, our unprecedented extensive analysis of W. frutescens highlighted the pharmacological potential of this atypical medicinal plant. By analogy with the major cultivated Withania species, the market potential of little-known plant is underlined.


Asunto(s)
Extractos Vegetales , Withania , Witanólidos , Withania/química , Witanólidos/farmacología , Witanólidos/química , Witanólidos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Animales , Hojas de la Planta/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Raíces de Plantas/química
10.
Nutrients ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674831

RESUMEN

An approach that shows promise for quickening the evolution of innovative anticancer drugs is the assessment of natural biomass sources. Our study sought to assess the effect of W. somnifera L. (WS) methanolic root and stem extracts on the expression of five targeted genes (cyclooxygenase-2, caspase-9, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2) in colon cancer cell lines (Caco-2 cell lines). Plant extracts were prepared for bioassay by dissolving them in dimethyl sulfoxide. Caco-2 cell lines were exposed to various concentrations of plant extracts, followed by RNA extraction for analysis. By explicitly relating phytoconstituents of WS to the dose-dependent overexpression of caspase-9 genes and the inhibition of cyclooxygenase-2, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2 genes, our novel findings characterize WS as a promising natural inhibitor of colorectal cancer (CRC) growth. Nonetheless, we recommend additional in vitro research to verify the current findings. With significant clinical benefits hypothesized, we offer WS methanolic root and stem extracts as potential organic antagonists for colorectal carcinogenesis and suggest further in vivo and clinical investigations, following successful in vitro trials. We recommend more investigation into the specific phytoconstituents in WS that contribute to the regulatory mechanisms that inhibit the growth of colon cancer cells.


Asunto(s)
Neoplasias Colorrectales , Extractos Vegetales , Withania , Humanos , Extractos Vegetales/farmacología , Células CACO-2 , Withania/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Metanol/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Caspasa 9/metabolismo , Caspasa 9/genética , Antineoplásicos Fitogénicos/farmacología , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Raíces de Plantas/química , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Tallos de la Planta/química
11.
Altern Ther Health Med ; 30(5): 6-13, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581340

RESUMEN

Objectives: Continuous and excessive secretion of pro-inflammatory and anti-inflammatory chemicals and cytokines may further deteriorate inflammation. Anti-inflammatory drugs play an imperative role in inhibiting the evolution of inflammatory diseases. As per the Unani doctrine, a holistic treatment approach is used to treat illnesses. Therefore, drugs having different actions are used to achieve the synergic effect. Three drugs (Cinnamomum zeylanicum, Alpinia galanga, and Withania somnifera), which are frequently used in Unani medicine for joint disorders were selected to evaluate the anti-inflammatory activity of the extract derived from them. Methods: We used RAW 264.7 macrophage cells to see the expression of inflammatory markers IL-1ß, IL-6, and TNF-α. Cytotoxic activity was assessed with MTT assay and Nitric Oxide (NO) was evaluated using Griess reagent. Further, anti-inflammatory activity was evaluated in Wistar Albino rats using carrageenan-induced paw oedema and immunohistochemistry assays for Cyclooxygenase-2 (COX-2). All the data were analyzed using ANOVA and Dunnett t test for multiple comparisons. Results: This extract did not show any cytotoxic effect and the gene expression was significantly reduced for IL-1ß, IL-6, and TNF-α in a dose-dependent manner. Further, NO production was also significantly reduced in the test groups. Immunohistochemistry revealed that the test groups had less inflammation as compared to the control group. Conclusion: It may be inferred that the ethanolic extract of the three herbs has strong anti-inflammatory activity in the tested inflammatory models and the extract is safe as it did not show any cytotoxic effects in both in vitro and in vivo conditions.


Asunto(s)
Alpinia , Antiinflamatorios , Cinnamomum zeylanicum , Extractos Vegetales , Ratas Wistar , Withania , Animales , Withania/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Ratas , Alpinia/química , Ratones , Cinnamomum zeylanicum/química , Células RAW 264.7 , Masculino , Edema/tratamiento farmacológico , Carragenina
12.
J Ethnopharmacol ; 331: 118261, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685363

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Despite various treatment modalities, the progression and metastasis of breast cancer (BC) are grave concerns due to the alarming disease-free survival rate (DFS) and overall survival rate (OS) of affected patients. Over the years, many antibiotics, synthetic compounds, medicinal plant isolates and polyherbal combinations have been used as adjuvants in therapy for the management of primary and secondary tumors. Paclitaxel (PTX)-based chemotherapy for breast cancer causes multiple adverse side effects in patients. Withania somnifera (L.) Dunal (WS) and Asparagus racemosus Willd. (AR) as Ayurveda-inspired plant-based adjuvants were investigated for their anticancer effects on MDA-MB-231 and 4T1 cells in mouse model systems. AIM OF THE STUDY: This study focused on evaluating the adjuvant properties of WS and AR plant extracts with PTX and their effectiveness over PTX alone in terms of tumor inhibition. MATERIALS AND METHODS: The effects of WS and AR on DNA double-strand breaks (DSBs), senescence induction and mitochondrial functions were evaluated in BC cells in vitro. The potential for cancer stem cell (CSC) inhibition was evaluated via mammosphere formation assays and CD44/CD24 immunostaining. In vivo tumor growth studies were conducted in athymic BALB/c mice for MDA-MB-231 cells and in BALB/c mice for 4T1 cells. RESULTS: Induction of senescence was evident due to DSBs induced by the WS and AR extracts. Mammosphere formation and CD44/CD24 CSC markers were reduced after treatment with WS, AR or the combination of both in MCF-7 cells. WS or AR inhibited epithelial-to-mesenchymal transition (EMT). In vivo studies demonstrated that tumor growth inhibition was more pronounced in the treated group than in the PTX alone group and the untreated control group. CONCLUSION: Our study showed that the use of WS or AR plant hydroalcoholic extracts in combination with paclitaxel (PTX) has better effects on sensitivity and efficacy than PTX alone, as demonstrated in in vitro BC cells and mouse models with BC cell grafts. Hence, scheduling adjuvant therapy with WS or AR alone or combined with PTX can be advantageous for the management of triple-negative BC (TNBC). Further studies are warranted in human clinical conditions to ascertain the efficacy of these treatments.


Asunto(s)
Asparagus , Neoplasias de la Mama , Ratones Endogámicos BALB C , Paclitaxel , Extractos Vegetales , Withania , Animales , Asparagus/química , Humanos , Withania/química , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ratones , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/aislamiento & purificación , Antígeno CD24/metabolismo , Receptores de Hialuranos/metabolismo , Adyuvantes Farmacéuticos/farmacología , Senescencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos
13.
Inflammopharmacology ; 32(3): 1903-1928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630361

RESUMEN

Penconazole (PEN) is a systemic triazole fungicide used to control various fungal diseases on grapes, stone fruits, cucurbits, and strawberries. Still, it leaves residues on treated crops after collection with many hazardous effects on population including neurotoxicity. Withania somnifera leaves extract (WSLE) is known for its memory and brain function enhancing ability. To evoke such action efficiently, WSLE bioactive metabolites are needed to cross the blood-brain barrier, that could limit the availability of such compounds to be localized within the brain. Therefore, in the present study, the association between PEN exposure and neurotoxicity was evaluated, and formulated WSLE nanoemulsion was investigated for improving the permeability of the plant extract across the blood-brain barrier. The rats were divided into five groups (n = 6). The control group was administered distilled water, group II was treated with W. somnifera leaves extract nanoemulsion (WSLE NE), group III received PEN, group IV received PEN and WSLE, and group V received PEN and WSLE NE. All rats were gavaged daily for 6 weeks. Characterization of compounds in WSLE using LC-MS/MS analysis was estimated. Neurobehavioral disorders were evaluated in all groups. Oxidative stress biomarkers, antioxidant enzyme activities, and inflammatory cytokines were measured in brain tissue. Furthermore, the gene expression patterns of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax were measured. Histopathological changes and immunohistochemical expression in the peripheral sciatic nerve and cerebral cortex were evaluated. A total of 91 compounds of different chemo-types were detected and identified in WSLE in both ionization modes. Our data showed behavioral impairment in the PEN-treated group, with significant elevation of oxidative stress biomarkers, proinflammatory cytokines, neuronal damage, and apoptosis. In contrast, the PEN-treated group with WSLE NE showed marked improvement in behavioral performance and histopathological alteration with a significant increase in antioxidant enzyme activity and anti-inflammatory cytokines compared to the group administered WSLE alone. The PEN-treated group with WSLE NE in turn significantly downregulated the expression levels of GFAP, APP, vimentin, TGF-ß1, Smad2 and Bax in brain tissue. In conclusion, WSLE NE markedly enhanced the permeability of plant extract constituents through the blood brain barrier to boost its neuroprotective effect against PEN-induced neurotoxicity.


Asunto(s)
Fármacos Neuroprotectores , Estrés Oxidativo , Extractos Vegetales , Hojas de la Planta , Transducción de Señal , Proteína Smad2 , Factor de Crecimiento Transformador beta1 , Withania , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Withania/química , Ratas , Hojas de la Planta/química , Fármacos Neuroprotectores/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína Smad2/metabolismo , Emulsiones , Síndromes de Neurotoxicidad/tratamiento farmacológico , Ratas Wistar , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Antioxidantes/farmacología
14.
Phytother Res ; 38(3): 1695-1714, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38318763

RESUMEN

Withania somnifera, the plant named Indian ginseng, Ashwagandha, or winter cherry, has been used since ancient times to cure various health ailments. Withania somnifera is rich in constituents belonging to chemical classes like alkaloids, saponins, flavonoids, phenolic acids, and withanolides. Several chemotypes were identified based on their phytochemical composition and credited for their multiple bioactivities. Besides, exhibiting neuroprotective, immunomodulatory, adaptogenic, anti-stress, bone health, plant has shown promising anti-cancer properties. Several withanolides have been reported to play a crucial role in cancer; they target cancer cells by different mechanisms such as modulating the expression of tumor suppressor genes, apoptosis, telomerase expression, and regulating cell signaling pathway. Though, many treatments are available for cancer; however, to date, no assured reliable cure for cancer is made available. Additionally, synthetic drugs may lead to development of resistance in time; therefore, focus on new and natural drugs for cancer therapeutics may prove a longtime effective alternative. This current report is a comprehensive combined analysis upto 2023 with articles focused on bio-activities of plant Withania somnifera from various sources, including national and international government sources. This review focuses on understanding of various mechanisms and pathways to inhibit uncontrolled cell growth by W. somnifera bioactives, as reported in literature. This review provides a recent updated status of the W. somnifera on pharmacological properties in general and anti-cancer in particular and may provide a guiding resource for researchers associated with natural product-based cancer research and healthcare management.


Asunto(s)
Withania , Witanólidos , Witanólidos/farmacología , Withania/química , Extractos Vegetales/farmacología , Fitoquímicos
15.
J Asian Nat Prod Res ; 26(9): 1009-1023, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38311941

RESUMEN

Based on the major components in the leaves, the ashwagandha has been found to exist in several chemotypic forms in India. From the leaves of various accessions of Withania somnifera, which were maintained in our institute, three new steroids namely, 4-acetoxy-20ß-hydroxy-1-oxo-witha-2,5,24-trienolide (7), 24,25-dihydro-14α-hydroxy withanolide D (9), 5α,6ß,17α,27-tetrahydroxy-1-oxo-witha-2,24-dienolide (12) together with thirteen known withanolides were identified by spectroscopic methods. From the roots and stem of one accession and leaves of another, a new alkyl ester glucoside (4) has also been isolated. The new withanolides 7, 9 and 12 have been tentatively named as withanolide 135 A, withanolide 135B and withanolide 108, respectively.


Asunto(s)
Glucósidos , Hojas de la Planta , Raíces de Plantas , Tallos de la Planta , Withania , Witanólidos , Witanólidos/química , Withania/química , Hojas de la Planta/química , Estructura Molecular , Raíces de Plantas/química , Tallos de la Planta/química , Glucósidos/química , India , Panax/química , Extractos Vegetales
16.
J Complement Integr Med ; 21(2): 184-190, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299353

RESUMEN

OBJECTIVES: Stress is an aversive stimulus which disrupts the biological milieu of the organism and a variety of emotional and environmental stressors are known to influence allergic and immunological disorders like bronchial asthma but the pharmacological basis of such interactions is not clearly defined. Withania somnifera (ashwagandha) is a potent anti-stress agent used widely in Indian traditional medicine and the present experimental study evaluated the effects of W. somnifera extract (WSE) on chronic stress-induced neurobehavioral and immunological responses in an experimental model of allergic asthma in rats. METHODS: Wistar rats (200-250 g) were immunized and challenged with ovalbumin (OVA) and exposed to restraint stress (RS) and WSE treatments for 15 days. Following this, anxiety behavior was assessed by the elevated plus maze (EPM) test, and blood and BAL fluid samples were collected for measuring of inflammatory/immune markers by ELISA and biochemical assay. The data of the various treatment groups were analyzed by ANOVA and Tukey's test. RESULTS: Restraint stress (RS) induced anxiogenic behavior in the (EPM) test in OVA immunized rats, and this was attenuated by WSE (200 and 400 mg/kg), in a dose related manner. Examination of blood and BAL fluid in these RS exposed rats also resulted in elevations in IgE, TNF-α and IL-4 levels, which were also attenuated by WSE pretreatments. Further, WSE pretreatment neutralized the such RS induced changes in oxidative stress markers viz. elevated MDA and reduced GSH levels. CONCLUSIONS: The data pharmacologically validates role of stress in asthma and suggests that adaptogens like WSE could be a potential complementary agent for reducing anxiety as well as airway inflammation by a multi-targeted and holistic approach. The study also highlights the significance of integration of traditional and modern medical concepts in such chronic disorders.


Asunto(s)
Ansiedad , Asma , Extractos Vegetales , Ratas Wistar , Estrés Psicológico , Withania , Animales , Withania/química , Estrés Psicológico/tratamiento farmacológico , Extractos Vegetales/farmacología , Masculino , Ansiedad/tratamiento farmacológico , Ratas , Asma/tratamiento farmacológico , Asma/inmunología , Ovalbúmina , Inflamación/tratamiento farmacológico , Restricción Física , Factor de Necrosis Tumoral alfa/metabolismo , Modelos Animales de Enfermedad , Inmunoglobulina E/sangre , Conducta Animal/efectos de los fármacos , Líquido del Lavado Bronquioalveolar , Fitoterapia
17.
J Am Nutr Assoc ; 43(2): 115-130, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37410676

RESUMEN

Withania somnifera (L.) Dunal, abundant in the Indian subcontinent as Ashwagandha or winter cherry, is a herb of unprecedented therapeutic value. The number of ailments for which crude Ashwagandha extract can be used as a preventive or curative is practically limitless; and this explains why its use has been in vogue in ancient Ayurveda since at-least about four thousand years. The therapeutic potential of Ashwagandha mainly owes from its reservoir of alkaloids (isopelletierine, anaferine), steroidal lactones (withanolides) and saponins with an extra acyl group (sitoindoside VII and VIII). Withaferin A is an exceptionally potent withanolide which is found in high concentrations in W. somnifera plant extracts. The high reactivity of Withaferin A owes to the presence of a C-28 ergostane network with multiple sites of unsaturation and differential oxygenation. It interacts with the effectors of multiple signaling pathways involved in inflammatory response, oxidative stress response, cell cycle regulation and synaptic transmission and has been found to be significantly effective in inducing programmed cell death in cancer cells, restoring cognitive health, managing diabetes, alleviating metabolic disorders, and rejuvenating the overall body homeostasis. Additionally, recent studies suggest that Withaferin A (WA) has the potential to prevent viral endocytosis by sequestering TMPRSS2, the host transmembrane protease, without altering ACE-2 expression. The scope of performing subtle structural modifications in this multi-ring compound is believed to further expand its pharmacotherapeutic horizon. Very recently, a novel, heavy metal and pesticide free formulation of Ashwagandha whole herb extract, with a significant amount of WA, termed W-ferinAmax Ashwagandha, has been developed. The present review attempts to fathom the present and future of this wonder molecule with comprehensive discussion on its therapeutic potential, safety and toxicity.Key teaching pointsWithania somnifera (L.) Dunal is a medicinal plant with versatile therapeutic values.The therapeutic potential of the plant owes to the presence of withanolides such as Withaferin A.Withaferin A is a C-28 ergostane based triterpenoid with multiple reactive sites of therapeutic potential.It is effective against a broad spectrum of ailments including neurodegenerative disorders, cancer, inflammatory and oxidative stress disorders and it also promotes cardiovascular and sexual health.W-ferinAmax Ashwagandha, is a heavy metal and pesticide free Ashwagandha whole herb extract based formulation with significant amount of Withaferin A.


Asunto(s)
Metales Pesados , Withania , Witanólidos , Witanólidos/farmacología , Withania/química , Lactonas/metabolismo , Extractos Vegetales/farmacología , Esteroides/metabolismo , Metales Pesados/metabolismo
18.
J Biomol Struct Dyn ; 42(5): 2616-2631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37166375

RESUMEN

The withanolides are naturally occurring steroidal lactones found mainly in plants of the Solanaceae family. The subtribe Withaninae includes species like Withania sominifera, which are a source of many bioactive withanolides. In this work, we selected and evaluate the ADMET-related properties of 91 withanolides found in species of the subtribe Withaninae computationally, to predict the relationship between their structures and their pharmacokinetic profiles. We also evaluated the interaction of these withanolides with known targets of Alzheimer's disease (AD) through molecular docking and molecular dynamics. Withanolides presented favorable pharmacokinetic properties, like high gastrointestinal absorption, lipophilicity (logP ≤ 5), good distribution and excretion parameters, and a favorable toxicity profile. The specie Withania aristata stood out as an interesting source of the promising withanolides classified as 5-ene with 16-ene or 17-ene. These withanolides presented a favourable pharmacokinetic profile and were also highlighted as the best candidates for inhibition of AD-related targets. Our results also suggest that withanolides are likely to act as cholinesterase inhibitors by interacting with the catalytic pocket in an energy favorable and stable way.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Withania , Witanólidos , Witanólidos/farmacología , Simulación del Acoplamiento Molecular , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación de Dinámica Molecular , Withania/química
19.
J Biomol Struct Dyn ; 42(1): 528-549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37087726

RESUMEN

Multidrug resistance episodes in malaria increased from 3.9% to 20% from 2015 to 2019. Synchronizing the clinical manifestation in chronological sequence led to a unique impression on glucose demand (increased up to 100-fold) by the parasite-infected RBCs. Hence, restriction in the glucose uptake to parasite-infected RBCs could be an alternative approach to conquer the global burden of malaria to a greater extent. A C28 steroidal lactone Withaferin A (WS-3) isolated from Withania somnifera leave extract shows better thermodynamically stable interactions with the glucose transporters (GLUT-1 and PfHT) to standard drugs metformin and lopinavir. MD simulations for a trajectory period of 100 ns reflect stable interactions with the interactive amino acid residues such as Pro141, Gln161, Gln282, Gln283, Trp388, Phe389, and Phe40, Asn48, Phe85, His168, Gln169, Asn311 which potentiating inhibitory activity of WS-3 against GLUT-1 and PfHT respectively. WS-3 was non-hemotoxic (%hemolysis <5%) for a high concentration of up to 1 mg/ml in the physiological milieu. However, the %hemolysis significantly increased up to 30.55 ± 0.929% in a parasitophorous simulated environment (pH 5.0). Increased hemolysis of WS-3 could be due to the production of ROS in an acidic environment. Further, the inhibitory activity of WS-3 against both glucose transporters was supported with flow cytometry-based analysis of parasite-infected RBCs. Results show that WS-3 has low mean fluorescence intensities for both target proteins compared to conventional drugs, suggesting a potential sugar transporter inhibitor against GLUT-1 and PfHT for managing malaria. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Malaria , Withania , Withania/química , Hemólisis , Citometría de Flujo , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Glucosa/metabolismo
20.
J Ethnopharmacol ; 322: 117603, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38122911

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal; (Solanaceae), commonly known as Ashwagandha, is one of the most significant medicinal herbs in 'Ayurveda', a traditional Indian medicine used for centuries with evidence in scriptures. Ashwagandha was mentioned in old Ayurvedic medical literature such as Charaka Samhita and Sushruta Samhita for improving weight and strength, with multiple citations for internal and exterior usage in emaciation and nourishing the body. Ethnopharmacological evidence revealed that it was used to relieve inflammation, reduce abdominal swelling, as a mild purgative, and treat swollen glands. The root was regarded as a tonic, aphrodisiac, and emmenagogue in the Unani tradition of the Indian medicinal system. Further, Ashwagandha has been also described as an Ayurvedic medicinal plant in the Ayurvedic Pharmacopoeia of India extending informed therapeutic usage and formulations. Despite the widespread ethnopharmacological usage of Ashwagandha, clinical pharmacokinetic parameters are lacking in the literature; hence, the findings of this study will be relevant for calculating doses for future clinical evaluations of Ashwagandha root extract. AIM: This study aimed to develop a validated and highly sensitive bioanalytical method for quantifying withanosides and withanolides of the Ashwagandha root extract in human plasma to explore its bioaccessibility. Further to apply a developed method to perform pharmacokinetics of standardized Withania somnifera (L.) Dunal root extract (WSE; AgeVel®/Witholytin®) capsules in healthy human volunteers. METHODS: A sensitive, reliable, and specific ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous quantification of five major withanosides and withanolides (withanoside IV, withanoside V, withanolide A, withaferin A, and 12-deoxy-withastramonolide) in human plasma. Further for the study, eighteen healthy male volunteers (18-45 years) were enrolled in a non-randomized, open-label, single period, single treatment, clinical pharmacokinetic study and given a single dose (500 mg) of WSE (AgeVel®/Witholytin®) capsules containing not less than 7.5 mg of total withanolides under fasting condition. Later, pharmacokinetic profiles were assessed using the plasma concentration of each bioactive constituent Vs. time data. RESULTS: For all five constituents, the bioanalytical method demonstrated high selectivity, specificity, and linearity. There was no carryover, and no matrix effect was observed. Furthermore, the inter-day and intra-day precision and accuracy results fulfilled the acceptance criteria. Upon oral administration of WSE capsules, Cmax was found to be 0.639 ± 0.211, 2.926 ± 1.317, 2.833 ± 0.981, and 5.498 ± 1.986 ng/mL for withanoside IV, withanolide A, withaferin A, and 12-deoxy-withastramonolide with Tmax of 1.639 ± 0.993, 1.361 ± 0.850, 0.903 ± 0.273, and 1.375 ± 0.510 h respectively. Further, withanoside V was also detected in plasma; but its concentration was found below LLOQ. CONCLUSION: The novel and first-time developed bioanalytical method was successfully applied for the quantification of five bio-active constituents in human volunteers following administration of WSE capsules, indicating that withanosides and withanolides were rapidly absorbed from the stomach, have high oral bioavailability, and an optimum half-life to produce significant pharmacological activity. Further, AgeVel®/Witholytin® was found safe and well tolerated after oral administration, with no adverse reaction observed at a 500 mg dose.


Asunto(s)
Plantas Medicinales , Withania , Witanólidos , Humanos , Witanólidos/farmacología , Withania/química , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA