Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Anal Chim Acta ; 1317: 342884, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39030017

RESUMEN

BACKGROUND: A proportion of Haematococcus pluvialis under the light stress can effectively conduct astaxanthin biosynthesis, leading to the increase in cell size. Although the size is a critical indicator for identifying the astaxanthin-rich H. pluvialis cells, the cut-off size to be separated varies from sample to sample. RESULTS: Here, we report an ultrastretchable, straight elasto-inertial microchannel with tunable separation threshold to continuously separate the light-induced H. pluvialis cells by size. The symmetrical sheath flows confine the particles to the channel sidewalls, and large particles can cross the interface of viscoelastic fluids to the equilibrium position at the channel centerline. By stretching the microfluidic chip, the medium-sized particles can gradually migrate to the channel centerline in the narrower and longer channel, bringing the tunable separation threshold. Results show that the separation performance of the ultrastretchable microfluidic device is affected by total flow rate, flow rate ratio of sheath to sample, polyethylene oxide (PEO) solution configuration. Lastly, size-tunable separation of light-induced H. pluvialis cells is demonstrated. SIGNIFICANCE: To the best of our knowledge, this is the first report on cell migration in co-flow configurations in the ultra-stretchable microfluidics. Separation of H. pluvialis is not only a relevant end application in harvesting the astaxanthin-rich species, but the separated populations of highly productive microalgal cells will open a venue for cellular directed evolution.


Asunto(s)
Dispositivos Laboratorio en un Chip , Luz , Chlorophyceae/química , Xantófilas/química , Xantófilas/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula
2.
Molecules ; 29(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39064898

RESUMEN

Astaxanthin has 550 times more antioxidant activity than vitamin E, so it can scavenge free radicals in vivo and improve body immunity. However, the poor stability of astaxanthin becomes a bottleneck problem that limits its application. Herein, Haematococcus pluvialis (H. pluvialis) as a raw material was used to extract astaxanthin, and the optimal extraction conditions included the extraction solvent (EA:EtOH = 1:6, v/v), extraction temperature (60 °C), and extraction time (70 min). The extracted astaxanthin was then loaded using lecithin to form corresponding liposomes via the ethanol injection method. The results showed that the particle size and zeta potential of the prepared liposomes were 105.8 ± 1.2 nm and -38.0 ± 1.7 mV, respectively, and the encapsulation efficiency of astaxanthin in liposomes was 88.83%. More importantly, the stability of astaxanthin was significantly improved after being embedded in the prepared liposomes.


Asunto(s)
Liposomas , Xantófilas , Xantófilas/aislamiento & purificación , Xantófilas/química , Liposomas/química , Tamaño de la Partícula , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Chlorophyta/química , Chlorophyceae/química
3.
Mar Drugs ; 22(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057436

RESUMEN

The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Algas Marinas , Xantófilas , Xantófilas/farmacología , Xantófilas/química , Xantófilas/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Algas Marinas/química , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación
4.
Mar Drugs ; 22(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38921558

RESUMEN

Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sargassum , Xantófilas , Virus Zika , Antivirales/farmacología , Antivirales/aislamiento & purificación , Antivirales/química , Virus Zika/efectos de los fármacos , Animales , Sargassum/química , Chlorocebus aethiops , Xantófilas/farmacología , Xantófilas/aislamiento & purificación , Xantófilas/química , Células Vero , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
5.
Bioresour Technol ; 406: 130974, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879049

RESUMEN

The extraction of astaxanthin from Haematococcus pluvialis involves the utilization of petroleum-derived organic solvents or supercritical CO2, beset by safety concerns, high costs, and environmental sustainability limitations. This study, in contrast, employed a method involving the adjustment of salt concentration, propylene glycol, and vegetable oil fraction to disrupt emulsion in aqueous cell lysates for facilitating the separation of astaxanthin. Under optimized conditions, an astaxanthin-containing oil with a content of 1.88% was obtained even with the use of wet biomass, and four rounds of consecutive extraction resulted in a cumulative recovery yield of 66.41%. This process produced astaxanthin-enriched soybean oil with 9.49 times improved antioxidant capacity that satisfies a requirement for health functional application. Omitting the solvent removal and drying processes, which consume tremendous energy, can reduce the production cost by 2.98 times compared to conventional methods. Consequently, this study suggests an effective technique for producing edible oil containing H. pluvialis-derived astaxanthin.


Asunto(s)
Chlorophyta , Xantófilas , Xantófilas/aislamiento & purificación , Chlorophyta/química , Chlorophyceae , Emulsiones , Antioxidantes/farmacología , Biomasa , Solventes/química , Aceite de Soja/química
6.
Bioresour Technol ; 406: 131036, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925405

RESUMEN

The emerging nutraceutical, fucoxanthin, shows promise as a high-value product to enable the integrated biorefinery. Fucoxanthin can be extracted from algae through supercritical fluid extraction (SFE), but literature does not agree on optimal extraction conditions. Here, a statistical analysis of literature identifies supercritical carbon dioxide (scCO2) density, ethanol cosolvent amount, and polarity as significant predictors of fucoxanthin yield. Novel SFE experiments are then performed using a fucoxanthin standard, describing its fundamental solubility. These experiments establish solvent system polarity as the key knob to tune fucoxanthin recovery from 0% to 100% and give specific operating conditions for targeted fucoxanthin extraction.Further experiments compare extractions on fucoxanthin standard with extractions from Phaeodactylum tricornutum microalgae to elucidate the effect of the algae matrix. Results show selectivity of fucoxanthin over chlorophyll in scCO2 microalgae extractions that was not seen in extractions with ethanol, indicating a benefit of scCO2 to design selective extraction schemes.


Asunto(s)
Cromatografía con Fluido Supercrítico , Microalgas , Xantófilas , Cromatografía con Fluido Supercrítico/métodos , Xantófilas/aislamiento & purificación , Xantófilas/química , Microalgas/química , Etanol/química , Dióxido de Carbono/química , Solventes/química , Diatomeas/química , Clorofila , Biotecnología/métodos
7.
Biotechnol Adv ; 74: 108392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825214

RESUMEN

Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Xantófilas , Xantófilas/aislamiento & purificación , Escherichia coli/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Yarrowia/metabolismo , Yarrowia/genética , Microondas
8.
J Oleo Sci ; 73(5): 729-742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692895

RESUMEN

Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.


Asunto(s)
Envejecimiento , Galactosa , Microbioma Gastrointestinal , Hígado , Estrés Oxidativo , Xantófilas , Animales , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Suplementos Dietéticos , Galactosa/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/aislamiento & purificación
9.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175306

RESUMEN

Natural astaxanthin has been widely used in the food, cosmetic, and medicine industries due to its exceptional biological activity. Shrimp shell is one of the primary natural biological sources of astaxanthin. However, after astaxanthin recovery, there is still a lot of chitin contained in the residues. In this study, the residue from shrimp (Penaeus vannamei) shells after astaxanthin extraction using ionic liquid (IL) 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) was used as a bioadsorbent to remove fluoride from the aqueous solution. The results show the IL extraction conditions, including the solid/liquid ratio, temperature, time, and particle size, all played important roles in the removal of fluoride by the shrimp shell residue. The shrimp shells treated using [Emim]Ac at 100 °C for 2 h exhibited an obvious porous structure, and the porosity showed a positive linear correlation with defluorination (DF, %). Moreover, the adsorption process of fluoride was nonspontaneous and endothermic, which fits well with both the pseudo-second-order and Langmuir models. The maximum adsorption capacity calculated according to the Langmuir model is 3.29 mg/g, which is better than most bioadsorbents. This study provides a low-cost and efficient method for the preparation of adsorbents from shrimp processing waste to remove fluoride from wastewater.


Asunto(s)
Adsorción , Exoesqueleto , Fluoruros , Penaeidae , Contaminantes Químicos del Agua , Agua , Xantófilas , Animales , Exoesqueleto/química , Quitina/análisis , Quitina/química , Fluoruros/química , Fluoruros/aislamiento & purificación , Concentración de Iones de Hidrógeno , Líquidos Iónicos/química , Cinética , Tamaño de la Partícula , Penaeidae/química , Porosidad , Alimentos Marinos , Soluciones/química , Temperatura , Aguas Residuales/química , Agua/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Xantófilas/aislamiento & purificación
10.
Mar Drugs ; 20(2)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35200642

RESUMEN

Brown algae are ubiquitously distributed in the NW coastline of the Iberian Peninsula, where they stand as an underexploited resource. In this study, five solvents were applied to the extraction of pigments from nine brown algae, followed by their determination and quantification by HPLC-DAD. A total of 13 compounds were detected: Six were identified as chlorophylls, six were classified as xanthophylls, and one compound was reported as a carotene. Fucoxanthin was reported in all extracts, which is the most prominent pigment of these algae. Among them, L. saccharina and U. pinnatifida present the highest concentration of fucoxanthin (4.5-4.7 mg∙g-1 dry weight). Ethanol and acetone were revealed as the most efficient solvents for the extraction of pigments, showing a maximal value of 11.9 mg of total pigments per gram of dry alga obtained from the ethanolic extracts of H. elongata, followed by the acetonic extracts of L. ochroleuca. Indeed, ethanol was also revealed as the most efficient solvent according to its high extraction yield along all species evaluated. Our results supply insights into the pigment composition of brown algae, opening new perspectives on their commercial exploitation by food, pharmaceutical, and cosmeceutical industries.


Asunto(s)
Phaeophyceae/química , Pigmentos Biológicos/química , Solventes/química , Carotenoides/química , Carotenoides/aislamiento & purificación , Clorofila/química , Clorofila/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Pigmentos Biológicos/aislamiento & purificación , Agua de Mar , Xantófilas/química , Xantófilas/aislamiento & purificación
11.
Mar Drugs ; 20(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35200656

RESUMEN

Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce bioenergy through anaerobic digestion (AD) processes. Factors such as temperature (30 °C and 50 °C), pressure (20, 30, and 40 MPa), and ethanol (co-solvent concentration from 10% to 50% v/v) were optimized for improving the yield, purity, and recovery of fucoxanthin extracted using SFE. The highest yield (24.41% w/w) was obtained at 30 MPa, 30 °C, and 30% ethanol but the highest fucoxanthin purity and recovery (85.03mg/g extract and 66.60% w/w, respectively) were obtained at 30 MPa, 30 °C, and 40%ethanol. Furthermore, ethanol as a factor had the most significant effect on the overall process of SFE. Subsequently, P.tricornutum biomass and SFE-extracted diatom were used as substrates for biogas production through AD. The effect of fucoxanthin was studied on the yield of AD, which resulted in 77.15 ± 3.85 LSTP CH4/kg volatile solids (VS) and 56.66 ± 1.90 LSTP CH4/kg VS for the whole diatom and the extracted P.tricornutum, respectively. Therefore, P.tricornutuman can be considered a potential source of fucoxanthin and methane and both productions will contribute to the sustainability of the algae-biorefinery processes.


Asunto(s)
Biocombustibles , Diatomeas/metabolismo , Xantófilas/aislamiento & purificación , Anaerobiosis/fisiología , Biomasa , Cromatografía con Fluido Supercrítico/métodos , Etanol/química , Solventes/química , Temperatura
12.
Mol Biol Rep ; 48(10): 6923-6934, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34487292

RESUMEN

BACKGROUND: The liver has a solid inbuilt antioxidant defense system to regulate oxidative stress. However, exposure to an excessive level of ROS causes liver injury. This study examined the cytoprotective effect of neoxanthin, a xanthophyll antioxidant molecule isolated from Solanum trilobatum in stress-induced HepG2 cells. METHODS AND RESULTS: The cytotoxic effect of H2O2 and cytoprotective potential of ß-carotene, lutein, and neoxanthin was analyzed by WST-1 assay. The intracellular ROS level and mitochondrial membrane potential (MMP) were measured using DCFH-DA (2', 7'-dichlorofluorescin diacetate) and JC-10 MMP assay. The expression of anti-oxidant and apoptotic markers was measured by western blot analysis. Neoxanthin pretreatment exhibited better protection than ß-carotene and lutein against cell death caused by H2O2. It significantly arrested H2O2-mediated elevation of intracellular ROS levels and protected MMP. The intracellular antioxidant enzymes HO-1 and SOD-2 were upregulated by neoxanthin pretreatment. Neoxanthin also activated the protein expression of redox-sensitive transactivation factors, Nrf2 and NF-kB. The cytoprotective effect of neoxanthin was associated with increased expression of the anti-apoptotic protein, Bcl-2 and decreased pro-apoptotic protein Bax. CONCLUSIONS: For the first time, our results demonstrate that neoxanthin offers adequate protection against stress-mediated cytotoxicity in hepatocytes by activating the intracellular antioxidant defense system and blocking apoptosis.


Asunto(s)
Antioxidantes/metabolismo , Apoptosis , Peróxido de Hidrógeno/toxicidad , Transducción de Señal , Xantófilas/farmacología , Apoptosis/efectos de los fármacos , Carotenoides/farmacología , Citoprotección/efectos de los fármacos , Células Hep G2 , Humanos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Xantófilas/aislamiento & purificación
13.
Molecules ; 26(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34361618

RESUMEN

Lactic acid fermentation increases the bioactive properties of shrimp waste. Astaxanthin is the principal carotenoid present in shrimp waste, which can be found esterified in the liquid fraction (liquor) after its lactic acid fermentation. Supercritical CO2 technology has been proposed as a green alternative to obtain astaxanthin from fermented shrimp waste. This study aimed to optimize astaxanthin extraction by supercritical CO2 technology from fermented liquor of shrimp waste and study bioaccessibility using simulated gastrointestinal digestion (GD) of the optimized extract. A Box-Behnken design with three variables (pressure, temperature, and flow rate) was used to optimize the supercritical CO2 extraction. The optimized CO2 extract was obtained at 300 bar, 60 °C, and 6 mL/min, and the estimated characteristics showed a predictive extraction yield of 11.17%, antioxidant capacity of 1.965 mmol of Trolox equivalent (TE)/g, and astaxanthin concentration of 0.6353 µg/g. The experiment with optimal conditions performed to validate the predicted values showed an extraction yield of 12.62%, an antioxidant capacity of 1.784 mmol TE/g, and an astaxanthin concentration of 0.52 µg/g. The astaxanthin concentration decreased, and the antioxidant capacity of the optimized extract increased during gastrointestinal digestion. In conclusion, our optimized supercritical CO2 process is suitable for obtaining astaxanthin from shrimp by-products after lactic acid fermentation.


Asunto(s)
Antioxidantes , Penaeidae/química , Animales , Antioxidantes/análisis , Antioxidantes/aislamiento & purificación , Dióxido de Carbono/química , Fermentación , Residuos , Xantófilas/análisis , Xantófilas/aislamiento & purificación
14.
J Neurochem ; 158(5): 1131-1150, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34265077

RESUMEN

Retinitis pigmentosa (RP) is a group of inherited photoreceptor degeneration diseases that causes blindness without effective treatment. The pathogenesis of retinal degeneration involves mainly oxidative stress and inflammatory responses. Zeaxanthin dipalmitate (ZD), a wolfberry-derived carotenoid, has anti-inflammatory and anti-oxidative stress effects. Here we investigated whether these properties of ZD can delay the retinal degeneration in rd10 mice, a model of RP, and explored its underlying mechanism. One shot of ZD or control vehicle was intravitreally injected into rd10 mice on postnatal day 16 (P16). Retinal function and structure of rd10 mice were assessed at P25, when rods degenerate substantially, using a visual behavior test, multi-electrode-array recordings and immunostaining. Retinal pathogenic gene expression and regulation of signaling pathways by ZD were explored using transcriptome sequencing and western blotting. Our results showed that ZD treatment improved the visual behavior of rd10 mice and delayed the degeneration of retinal photoreceptors. It also improved the light responses of photoreceptors, bipolar cells and retinal ganglion cells. The expression of genes that are involved in inflammation, apoptosis and oxidative stress were up-regulated in rd10 mice, and were reduced by ZD. ZD further reduced the activation of two key factors, signal transducer and activator of transcription 3 and chemokine (C-C motif) ligand 2, down-regulated the expression of the inflammatory factor GFAP, and inhibited extracellular signal regulated protein kinases and P38, but not the JNK pathways. In conclusion, ZD delays the degeneration of the rd10 retina both morphologically and functionally. Its anti-inflammatory function is mediated primarily through the signal transducer and activator of transcription 3, chemokine (C-C motif) ligand 2 and MAPK pathways. Thus, ZD may serve as a potential clinical candidate to treat RP.


Asunto(s)
Quimiocina CCL2/antagonistas & inhibidores , Lycium , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Palmitatos/uso terapéutico , Degeneración Retiniana/prevención & control , Retinitis Pigmentosa/prevención & control , Factor de Transcripción STAT3/antagonistas & inhibidores , Xantófilas/uso terapéutico , Animales , Quimiocina CCL2/metabolismo , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Palmitatos/aislamiento & purificación , Palmitatos/farmacología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factor de Transcripción STAT3/metabolismo , Xantófilas/aislamiento & purificación , Xantófilas/farmacología
15.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206231

RESUMEN

As an abundant marine xanthophyll, fucoxanthin (FX) exhibits a broad range of biological activities. The preparation of high-purity FX is in great demand, however, most of the available methods require organic solvents which cannot meet the green chemistry standard. In the present study, a simple and efficient purification approach for the purification of FX from the brown seaweed Sargassum horneri was carried out. The FX-rich ethanol extract was isolated by octadecylsilyl (ODS) column chromatography using ethanol-water solvent as a gradient eluent. The overwhelming majority of FX was successfully eluted by the ethanol-water mixture (9:1, v/v), with a recovery rate of 95.36%. A parametric study was performed to optimize the aqueous ethanol precipitation process by investigating the effects on the purity and recovery of FX. Under the optimal conditions, the purity of FX was 91.07%, and the recovery rate was 74.98%. Collectively, the eco-friendly method was cost-efficient for the purification of FX. The developed method provides a potential approach for the large-scale production of fucoxanthin from the brown seaweed Sargassum horneri.


Asunto(s)
Etanol/química , Sargassum/química , Xantófilas/química , Xantófilas/aislamiento & purificación , Cromatografía
16.
Mar Drugs ; 19(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203079

RESUMEN

Photooxidative stress-inducible water-soluble astaxanthin-binding proteins, designated as AstaP, were identified in two Scenedesmaceae strains, Coelastrella astaxanthina Ki-4 and Scenedesmus obtusus Oki-4N; both strains were isolated under high light conditions. These AstaPs are classified as a novel family of carotenoprotein and are useful for providing valuable astaxanthin in water-soluble form; however, the distribution of AstaP orthologs in other microalgae remains unknown. Here, we examined the distribution of AstaP orthologs in the family Scenedesmaceae with two model microalgae, Chlamydomonas reinhardtii and Chlorella variabilis. The expression of AstaP orthologs under photooxidative stress conditions was detected in cell extracts of Scenedesmaceae strains, but not in model algal strains. Aqueous orange proteins produced by Scenedesmaceae strains were shown to bind astaxanthin. The protein from Scenedesmus costatus SAG 46.88 was purified. It was named ScosAstaP and found to bind astaxanthin. The deduced amino acid sequence from a gene encoding ScosAstaP showed 62% identity to Ki-4 AstaP. The expression of the genes encoding AstaP orthologs was shown to be inducible under photooxidative stress conditions; however, the production amounts of AstaP orthologs were estimated to be approximately 5 to 10 times lower than that of Ki-4 and Oki-4N.


Asunto(s)
Proteínas Portadoras/metabolismo , Chlorophyta/metabolismo , Estrés Oxidativo/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Chlorophyta/química , Chlorophyta/clasificación , Luz , Scenedesmus/química , Scenedesmus/clasificación , Scenedesmus/metabolismo , Solubilidad , Agua , Xantófilas/química , Xantófilas/aislamiento & purificación , Xantófilas/metabolismo
17.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208026

RESUMEN

In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Chlorophyceae/química , Extractos Vegetales/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Proliferación Celular , Células Hep G2 , Humanos , Líquidos Iónicos , Estructura Molecular , Extractos Vegetales/farmacología , Presión , Xantófilas/aislamiento & purificación , Xantófilas/farmacología
18.
Ultrason Sonochem ; 76: 105666, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34271396

RESUMEN

This study was aimed at optimizing the astaxanthin extraction efficiency from shrimp shell (green tiger, Penaeus semisulcatus). Astaxanthin was extracted using selected nonpolar/polar solvents (petroleum ether, n-hexane, ethanol, acetone) individually and in ternary mixtures of petroleum ether, acetone, and water in ratios of 15:50:35, 50:45:5, and 15:75:10 for different times (2,4 and 6 h). The results showed that solvents with higher polarity were more suitable for the extraction of astaxanthin, and increasing the extraction time from 2 to 6 h improved the extraction yield. The conditions of extraction of astaxanthin with the desirable solvent were then optimized with the ultrasonic method using the Box-Behnken design [variables included: extraction temperature (25 to 45 °C), extraction time (5 to 15 min), and ultrasound amplitude (20 to 100%)]. Optimal extraction conditions were determined as the ultrasonic amplitude of 23.6%, extraction time of 13.9 min, and extraction temperature of 26.3 °C. Under this optimum condition, the amount of astaxanthin, ferric reducing antioxidant power, and free radical scavenging capacity of the extract were obtained as 51.5%, 1705 µmol of Fe2+/g, and 73.9%, respectively. Extraction and analysis of the extract at the optimum point were used to validate the results.


Asunto(s)
Exoesqueleto/química , Fraccionamiento Químico/métodos , Penaeidae/química , Ondas Ultrasónicas , Animales , Temperatura , Factores de Tiempo , Xantófilas/aislamiento & purificación
19.
Ultrason Sonochem ; 77: 105671, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34304119

RESUMEN

The development of green and sustainable extraction technologies for various naturally active biomaterials is gaining increasing attention due to their environmentally friendly advantages. In this work, the ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using different green solvents was presented. Ethyl lactate, limonene, soybean oil, and sunflower oil were used in place of traditional organic solvents. Ethyl lactate showed similar performance to organic solvents, whereas limonene and vegetable oil exhibited higher selectivity for fucoxanthin. Moreover, the effects of various extraction factors, including liquid/solid ratio, extraction time, extraction temperature, as well as amplitude were studied. The optimal conditions were optimized as follows: liquid/solid ratio, 40 mL/g; extraction time, 27 min; extraction temperature, 75 ℃; amplitude, 53%; and solvent, ethyl lactate. Optimal model of second-order kinetic parameters (rate constant, equilibrium concentration, and initial extraction rate) was successfully developed for describing the dynamic ultrasonic extraction process under different operating conditions.


Asunto(s)
Modelos Químicos , Sargassum/química , Solventes/química , Ondas Ultrasónicas , Xantófilas/aislamiento & purificación , Tecnología Química Verde , Cinética
20.
Mar Drugs ; 19(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068940

RESUMEN

Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceuticals because of their antioxidant activity. In this study, colored microorganisms were isolated from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was found to be a pure yellow carotenoid producer, and the strain was identified as Sphingomonas sp. (Proteobacteria) by 16S rRNA gene sequence analysis; members of this genus are commonly isolated from air, the human body, and marine environments. The carotenoid was identified as nostoxanthin ((2,3,2',3')-ß,ß-carotene-2,3,2',3'-tetrol) by mass spectrometry (MS), MS/MS, and ultraviolet-visible absorption spectroscopy (UV-Vis). Nostoxanthin is a poly-hydroxy yellow carotenoid isolated from some photosynthetic bacteria, including some species of Cyanobacteria. The strain Sphingomonas sp. SG73 produced highly pure nostoxanthin of approximately 97% (area%) of the total carotenoid production, and the strain was halophilic and tolerant to 1.5-fold higher salt concentration as compared with seawater. When grown in 1.8% artificial sea salt, nostoxanthin production increased by 2.5-fold as compared with production without artificial sea salt. These results indicate that Sphingomonas sp. SG73 is an efficient producer of nostoxanthin, and the strain is ideal for carotenoid production using marine water because of its compatibility with sea salt.


Asunto(s)
Sedimentos Geológicos/microbiología , Sphingomonas/aislamiento & purificación , Sphingomonas/metabolismo , Xantófilas/aislamiento & purificación , Xantófilas/metabolismo , Japón , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Sales (Química)/farmacología , Agua de Mar , Sphingomonas/genética , Espectrometría de Masas en Tándem , Xantófilas/análisis , Xantófilas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA