Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
BMC Plant Biol ; 24(1): 337, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664617

RESUMEN

BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.


Asunto(s)
Endófitos , Genotipo , Olea , Enfermedades de las Plantas , Xylella , Olea/microbiología , Xylella/fisiología , Xylella/genética , Endófitos/fisiología , Endófitos/genética , Enfermedades de las Plantas/microbiología , Microbiota , Bacterias/genética , Bacterias/clasificación , Hongos/fisiología , Hongos/genética
2.
Phytopathology ; 114(7): 1566-1576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537081

RESUMEN

Outbreak response to quarantine pathogens and pests in the European Union (EU) is regulated by the EU Plant Health Law, but the performance of outbreak management plans in terms of their effectiveness and efficiency has been quantified only to a limited extent. As a case study, the disease dynamics of almond leaf scorch, caused by Xylella fastidiosa, in the affected area of Alicante, Spain, were approximated using an individual-based spatial epidemiological model. The emergence of this outbreak was dated based on phylogenetic studies, and official surveys were used to delimit the current extent of the disease. Different survey strategies and disease control measures were compared to determine their effectiveness and efficiency for outbreak management in relation to a baseline scenario without interventions. One-step and two-step survey approaches were compared with different confidence levels, buffer zone sizes, and eradication radii, including those set by the EU legislation for X. fastidiosa. The effect of disease control interventions was also considered by decreasing the transmission rate in the buffer zone. All outbreak management plans reduced the number of infected trees (effectiveness), but large differences were observed in the number of susceptible trees not eradicated (efficiency). The two-step survey approach, high confidence level, and the reduction in the transmission rate increased the efficiency. Only the outbreak management plans with the two-step survey approach removed infected trees completely, but they required greater survey efforts. Although control measures reduced disease spread, surveillance was the key factor in the effectiveness and efficiency of the outbreak management plans. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Brotes de Enfermedades , Enfermedades de las Plantas , Prunus dulcis , Xylella , Xylella/fisiología , Xylella/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/estadística & datos numéricos , España , Prunus dulcis/microbiología , Hojas de la Planta/microbiología , Filogenia
3.
Redox Biol ; 72: 103128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554523

RESUMEN

YbbN/CnoX are proteins that display a Thioredoxin (Trx) domain linked to a tetratricopeptide domain. YbbN from Escherichia coli (EcYbbN) displays a co-chaperone (holdase) activity that is induced by HOCl. Here, we compared EcYbbN with YbbN proteins from Xylella fastidiosa (XfYbbN) and from Pseudomonas aeruginosa (PaYbbN). EcYbbN presents a redox active Cys residue at Trx domain (Cys63), 24 residues away from SQHC motif (SQHC[N24]C) that can form mixed disulfides with target proteins. In contrast, XfYbbN and PaYbbN present two Cys residues in the CXXC (CAPC) motif, while only PaYbbN shows the Cys residue equivalent to Cys63 of EcYbbN. Our phylogenetic analysis revealed that most of the YbbN proteins are in the bacteria domain of life and that their members can be divided into four groups according to the conserved Cys residues. EcYbbN (SQHC[N24]C), XfYbbN (CAPC[N24]V) and PaYbbN (CAPC[N24]C) are representatives of three sub-families. In contrast to EcYbbN, both XfYbbN and PaYbbN: (1) reduced an artificial disulfide (DTNB) and (2) supported the peroxidase activity of Peroxiredoxin Q from X. fastidiosa, suggesting that these proteins might function similarly to the canonical Trx enzymes. Indeed, XfYbbN was reduced by XfTrx reductase with a high catalytic efficiency (kcat/Km = 1.27 x 107 M-1 s-1), similar to the canonical XfTrx (XfTsnC). Furthermore, EcYbbN and XfYbbN, but not PaYbbN displayed HOCl-induced holdase activity. Remarkably, EcYbbN gained disulfide reductase activity while lost the HOCl-activated chaperone function, when the SQHC was replaced by CQHC. In contrast, the XfYbbN CAPA mutant lost the disulfide reductase activity, while kept its HOCl-induced chaperone function. In all cases, the induction of the holdase activity was accompanied by YbbN oligomerization. Finally, we showed that deletion of ybbN gene did not render in P. aeruginosa more sensitive stressful treatments. Therefore, YbbN/CnoX proteins display distinct properties, depending on the presence of the three conserved Cys residues.


Asunto(s)
Escherichia coli , Oxidorreductasas , Pseudomonas aeruginosa , Tiorredoxinas , Xylella , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química , Filogenia , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/química , Xylella/enzimología , Xylella/genética , Xylella/metabolismo
4.
Plant Dis ; 108(6): 1476-1480, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38254326

RESUMEN

Xylella fastidiosa causes bacterial leaf scorch in southern highbush (Vaccinium corymbosum interspecific hybrids) and is also associated with a distinct disease phenotype in rabbiteye blueberry (V. virgatum) cultivars in the southeastern United States. Both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex have been reported to cause problems in southern highbush blueberry, but so far only X. fastidiosa subsp. multiplex has been reported in rabbiteye cultivars in Louisiana. In this study, we report detection of X. fastidiosa in rabbiteye blueberry plants in association with symptoms of foliar reddening and shoot dieback. High throughput sequencing of an X. fastidiosa-positive plant sample and comparative analyses identified the strain in one of these plants as being X. fastidiosa subsp. fastidiosa. We briefly discuss the implications of these findings, which may spur research into blueberry as a potential inoculum source that could enable spread to other susceptible fruit crops in South Carolina.


Asunto(s)
Arándanos Azules (Planta) , Enfermedades de las Plantas , Xylella , Xylella/genética , Xylella/aislamiento & purificación , Xylella/fisiología , Arándanos Azules (Planta)/microbiología , Enfermedades de las Plantas/microbiología , South Carolina , Hojas de la Planta/microbiología
5.
Phytopathology ; 114(1): 35-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37530473

RESUMEN

Global travel and trade in combination with climate change are expanding the geographic distribution of plant pathogens. The bacterium Xylella fastidiosa is a prime example. Native to the Americas, it has spread to Europe, Asia, and the Middle East. To assess the risk that pathogen introductions pose to crops in newly invaded areas, it is key to survey their diversity, host range, and disease incidence in relation to climatic conditions where they are already present. We performed a survey of X. fastidiosa in grapevine in Virginia using a combination of quantitative PCR, multilocus sequencing, and metagenomics. We also analyzed samples from deciduous trees with leaf scorch symptoms. X. fastidiosa subspecies fastidiosa was identified in grapevines in all regions of the state, even in Northern Virginia, where the temperature was below -9°C for 10 days per year on average in the years preceding sampling. Unexpectedly, we also found for the first time grapevine samples infected with X. fastidiosa subspecies multiplex (Xfm). The Xfm lineage found in grapevines had been previously isolated from blueberries in the Southeastern United States and was distinct from that found in deciduous trees in Virginia. The obtained results will be important for risk assessment of X. fastidiosa introductions in other parts of the world.


Asunto(s)
Enfermedades de las Plantas , Xylella , Virginia , Enfermedades de las Plantas/microbiología , Xylella/genética , Árboles , Productos Agrícolas
6.
Plant Dis ; 108(6): 1555-1564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38105458

RESUMEN

Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, has been found in all major grape-growing regions in California, U.S.A. Large collections of X. fastidiosa isolates are available from these areas, which enable comparative studies of pathogen genetic traits and virulence. Owing to the significant resource requirements for experiments with X. fastidiosa in grapevine, however, most studies use only a single isolate to evaluate disease, and it is not clear how much variability between isolates impacts disease development in experimental or natural settings. In this study, a comprehensive panel of X. fastidiosa isolates from all California grape-growing regions was tested for virulence in susceptible grapevine and in the model host plant, tobacco. Seventy-one isolates were tested, 29 in both grapevine and tobacco. The results of this study highlight the inherent variability of inoculation experiments with X. fastidiosa, including variation in disease severity in plants inoculated with a single isolate, and variability between experimental replicates. There were limited differences in virulence between isolates that were consistent across experimental replicates, or across different host plants. This suggests that choice of isolate within the X. fastidiosa subsp. fastidiosa Pierce's disease group may not make any practical difference when testing in susceptible grape varieties, and that pathogen evolution has not significantly changed virulence of Pierce's disease isolates within California. The location of isolation also did not dictate relative disease severity. This information will inform experimental design for future studies of X. fastidiosa in grapevine and provide important context for genomic research.


Asunto(s)
Enfermedades de las Plantas , Vitis , Xylella , Xylella/genética , Xylella/patogenicidad , Vitis/microbiología , Enfermedades de las Plantas/microbiología , California , Virulencia , Nicotiana/microbiología
7.
Phytopathology ; 114(6): 1186-1195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38105220

RESUMEN

This research focused on studying the dynamics of the bacterial pathogen Xylella fastidiosa in almond trees across different developmental stages. The objective was to understand the seasonal distribution and concentration of X. fastidiosa within almond trees. Different tree organs, including leaves, shoots, branches, fruits, flowers, and roots, from 10 X. fastidiosa-infected almond trees were sampled over 2 years. The incidence and concentration of X. fastidiosa were determined using qPCR and isolation. Throughout the study, X. fastidiosa was consistently absent from fruits, flowers, and roots, whereas it was detected in leaves as well as in shoots and branches. We demonstrate that the absence of X. fastidiosa in the roots is likely linked to the inability of this isolate to infect the peach-almond hybrid rootstock GF677. X. fastidiosa incidence in shoots and branches remained consistent throughout the year, whereas in leaf petioles, it varied across developmental stages, with lower detection during the early and late stages of the season. Similarly, viable X. fastidiosa cells were isolated from shoots and branches at all developmental stages, but no successful isolations were achieved from leaf petioles during the vegetative and nut growth stage. Studying the progression of almond leaf scorch symptoms in trees with initial infections showed that once symptoms emerged on one branch, symptomless branches were likely already infected by the bacterium. Therefore, selectively pruning symptomatic branches is unlikely to cure the tree. This study enhances our understanding of X. fastidiosa dynamics in almond trees and may have practical applications for its detection and control.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Prunus dulcis , Estaciones del Año , Xylella , Xylella/fisiología , Xylella/genética , Enfermedades de las Plantas/microbiología , Prunus dulcis/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Árboles/microbiología , Brotes de la Planta/microbiología , Flores/microbiología , Frutas/microbiología
8.
mBio ; 14(5): e0139523, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37830811

RESUMEN

IMPORTANCE: It is well established that exopolysaccharide (EPS) is an integral structural component of bacterial biofilms necessary for assembly and maintenance of the three-dimensional architecture of the biofilm. However, the process and role of EPS turnover within a developing biofilm is not fully understood. Here, we demonstrated that Xylella fastidiosa uses a self-produced endoglucanase to enzymatically process its own EPS to modulate EPS polymer length. This enzymatic processing of EPS dictates the early stages of X. fastidiosa's biofilm development, which, in turn, affects its behavior in planta. A deletion mutant that cannot produce the endoglucanase was hypervirulent, thereby linking enzymatic processing of EPS to attenuation of virulence in symptomatic hosts, which may be a vestige of X. fastidiosa's commensal behavior in many of its other non-symptomatic hosts.


Asunto(s)
Celulasa , Xylella , Celulasa/genética , Polímeros , Biopelículas , Xylella/genética
10.
BMC Genomics ; 24(1): 409, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474911

RESUMEN

BACKGROUND: Muscadine grape (Vitis rotundifolia) is resistant to many of the pathogens that negatively impact the production of common grape (V. vinifera), including the bacterial pathogen Xylella fastidiosa subsp. fastidiosa (Xfsf), which causes Pierce's Disease (PD). Previous studies in common grape have indicated Xfsf delays host immune response with a complex O-chain antigen produced by the wzy gene. Muscadine cultivars range from tolerant to completely resistant to Xfsf, but the mechanism is unknown. RESULTS: We assembled and annotated a new, long-read genome assembly for 'Carlos', a cultivar of muscadine that exhibits tolerance, to build upon the existing genetic resources available for muscadine. We used these resources to construct an initial pan-genome for three cultivars of muscadine and one cultivar of common grape. This pan-genome contains a total of 34,970 synteny-constrained entries containing genes of similar structure. Comparison of resistance gene content between the 'Carlos' and common grape genomes indicates an expansion of resistance (R) genes in 'Carlos.' We further identified genes involved in Xfsf response by transcriptome sequencing 'Carlos' plants inoculated with Xfsf. We observed 234 differentially expressed genes with functions related to lipid catabolism, oxidation-reduction signaling, and abscisic acid (ABA) signaling as well as seven R genes. Leveraging public data from previous experiments of common grape inoculated with Xfsf, we determined that most differentially expressed genes in the muscadine response were not found in common grape, and three of the R genes identified as differentially expressed in muscadine do not have an ortholog in the common grape genome. CONCLUSIONS: Our results support the utility of a pan-genome approach to identify candidate genes for traits of interest, particularly disease resistance to Xfsf, within and between muscadine and common grape.


Asunto(s)
Vitis , Xylella , Vitis/microbiología , Resistencia a la Enfermedad/genética , Xylella/genética , Cromosomas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
11.
Methods Mol Biol ; 2659: 51-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249884

RESUMEN

Early diagnosis is part of a decision-making process which in the case of plant diseases may prevent the spread of invasive plant pathogens and assist in their eradication. Significant advantages could be obtained from moving testing technology closer to the sampling site, thereby reducing the detection time. This chapter describes a portable real-time LAMP assay for a specific detection of Xylella fastidiosa in-field. The LAMP assay, including DNA extraction, allows a complete and specific in-field analysis in just 40 minutes, enabling the detection of pathogen DNA in host tissues.


Asunto(s)
Xylella , Xylella/genética , Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Plantas , ADN
12.
Commun Biol ; 6(1): 580, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253933

RESUMEN

Xylella fastidiosa is a bacterium that infects crops like grapevines, coffee, almonds, citrus and olives. There is little understanding of the genes that contribute to plant resistance, the genomic architecture of resistance, and the potential role of climate in shaping resistance, in part because major crops like grapevines (Vitis vinifera) are not resistant to the bacterium. Here we study a wild grapevine species, V. arizonica, that segregates for resistance. Using genome-wide association, we identify candidate resistance genes. Resistance-associated kmers are shared with a sister species of V. arizonica but not with more distant species, suggesting that resistance evolved more than once. Finally, resistance is climate dependent, because individuals from low ( < 10 °C) temperature locations in the wettest quarter were typically susceptible to infection, likely reflecting a lack of pathogen pressure in colder climates. In fact, climate is as effective a predictor of resistance phenotypes as some genetic markers. We extend our climate observations to additional crops, predicting that increased pathogen pressure is more likely for grapevines and almonds than some other susceptible crops.


Asunto(s)
Vitis , Xylella , Vitis/genética , Vitis/microbiología , Estudio de Asociación del Genoma Completo , Xylella/genética , Cambio Climático
13.
Appl Environ Microbiol ; 89(5): e0043923, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37154680

RESUMEN

Homologous recombination plays a key function in the evolution of bacterial genomes. Within Xylella fastidiosa, an emerging plant pathogen with increasing host and geographic ranges, it has been suggested that homologous recombination facilitates host switching, speciation, and the development of virulence. We used 340 whole-genome sequences to study the relationship between inter- and intrasubspecific homologous recombination, random mutation, and natural selection across individual X. fastidiosa genes. Individual gene orthologs were identified and aligned, and a maximum likelihood (ML) gene tree was generated. Each gene alignment and tree pair were then used to calculate gene-wide and branch-specific r/m values (relative effect of recombination to mutation), gene-wide and branch-site nonsynonymous over synonymous substitution rates (dN/dS values; episodic selection), and branch length (as a proxy for mutation rate). The relationships between these variables were evaluated at the global level (i.e., for all genes among and within a subspecies), among specific functional classes (i.e., COGs), and between pangenome components (i.e., accessory versus core genes). Our analysis showed that r/m varied widely among genes as well as across X. fastidiosa subspecies. While r/m and dN/dS values were positively correlated in some instances (e.g., core genes in X. fastidiosa subsp. fastidiosa and both core and accessory genes in X. fastidiosa subsp. multiplex), low correlation coefficients suggested no clear biological significance. Overall, our results indicate that, in addition to its adaptive role in certain genes, homologous recombination acts as a homogenizing and a neutral force across phylogenetic clades, gene functional groups, and pangenome components. IMPORTANCE There is ample evidence that homologous recombination occurs frequently in the economically important plant pathogen Xylella fastidiosa. Homologous recombination has been known to occur among sympatric subspecies and is associated with host-switching events and virulence-linked genes. As a consequence, is it generally assumed that recombinant events in X. fastidiosa are adaptive. This mindset influences expectations of how homologous recombination acts as an evolutionary force as well as how management strategies for X. fastidiosa diseases are determined. Yet, homologous recombination plays roles beyond that of a source for diversification and adaptation. Homologous recombination can act as a DNA repair mechanism, as a means to facilitate nucleotide compositional change, as a homogenization mechanism within populations, or even as a neutral force. Here, we provide a first assessment of long-held beliefs regarding the general role of recombination in adaptation for X. fastidiosa. We evaluate gene-specific variations in homologous recombination rate across three X. fastidiosa subspecies and its relationship to other evolutionary forces (e.g., natural selection, mutation, etc.). These data were used to assess the role of homologous recombination in X. fastidiosa evolution.


Asunto(s)
Variación Genética , Xylella , Filogenia , Genoma Bacteriano , Xylella/genética , Recombinación Homóloga , Plantas/genética , Enfermedades de las Plantas/microbiología
14.
J Microbiol Methods ; 208: 106719, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028518

RESUMEN

A targeted enrichment method was developed to sequence Xylella fastidiosa genomic DNA directly from plant samples. The method was evaluated on various plant species infected with different strains at different levels of contamination. After enrichment, X. fastidiosa genome coverage was above 99.9% for all tested samples.


Asunto(s)
Enfermedades de las Plantas , Xylella , Xylella/genética , Secuenciación Completa del Genoma , Análisis de Secuencia de ADN , Plantas
15.
Mol Plant Pathol ; 24(6): 527-535, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36992605

RESUMEN

While there are documented host shifts in many bacterial plant pathogens, the genetic foundation of host shifts is largely unknown. Xylella fastidiosa is a bacterial pathogen found in over 600 host plant species. Two parallel host shifts occurred-in Brazil and Italy-in which X. fastidiosa adapted to infect olive trees, whereas related strains infected coffee. Using 10 novel whole-genome sequences from an olive-infecting population in Brazil, we investigated whether these olive-infecting strains diverged from closely related coffee-infecting strains. Several single-nucleotide polymorphisms, many derived from recombination events, and gene gain and loss events separated olive-infecting strains from coffee-infecting strains in this clade. The olive-specific variation suggests that this event was a host jump with genetic isolation between coffee- and olive-infecting X. fastidiosa populations. Next, we investigated the hypothesis of genetic convergence in the host shift from coffee to olive in both populations (Brazil and Italy). Each clade had multiple mutations and gene gain and loss events unique to olive, yet no overlap between clades. Using a genome-wide association study technique, we did not find any plausible candidates for convergence. Overall, this work suggests that the two populations adapted to infect olive trees through independent genetic solutions.


Asunto(s)
Café , Xylella , Café/microbiología , Estudio de Asociación del Genoma Completo , Xylella/genética , Brasil , Enfermedades de las Plantas/microbiología
16.
Appl Environ Microbiol ; 89(1): e0187322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36598481

RESUMEN

Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.


Asunto(s)
Enfermedades de las Plantas , Xylella , Productos Agrícolas , Metilación de ADN , Transferencia de Gen Horizontal , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xylella/genética , Xylella/patogenicidad
17.
Commun Biol ; 6(1): 103, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707697

RESUMEN

Of American origin, a wide diversity of Xylella fastidiosa strains belonging to different subspecies have been reported in Europe since 2013 and its discovery in Italian olive groves. Strains from the subspecies multiplex (ST6 and ST7) were first identified in France in 2015 in urban and natural areas. To trace back the most probable scenario of introduction in France, the molecular evolution rate of this subspecies was estimated at 3.2165 × 10-7 substitutions per site per year, based on heterochronous genome sequences collected worldwide. This rate allowed the dating of the divergence between French and American strains in 1987 for ST6 and in 1971 for ST7. The development of a new VNTR-13 scheme allowed tracing the spread of the bacterium in France, hypothesizing an American origin. Our results suggest that both sequence types were initially introduced and spread in Provence-Alpes-Côte d'Azur (PACA); then they were introduced in Corsica in two waves from the PACA bridgehead populations.


Asunto(s)
Xylella , Francia , Europa (Continente) , Italia , Xylella/genética
19.
Phytopathology ; 113(6): 1128-1132, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36441872

RESUMEN

Xylella fastidiosa is a vascular plant pathogenic bacterium native to the Americas that is causing significant epidemics and economic losses in olive and almonds in Europe, where it is a quarantine pathogen. Since its first detection in 2013 in Italy, mandatory surveys across Europe revealed the presence of the bacterium also in France, Spain, and Portugal. Combining Oxford Nanopore Technologies and Illumina sequencing data, we assembled high-quality complete genomes of seven X. fastidiosa subsp. fastidiosa strains isolated from different plants in Spain, the United States, and Mexico. Comparative genomic analyses discovered differences in plasmid content among strains, including plasmids that had been overlooked previously when using the Illumina sequencing platform alone. Interestingly, in strain CFBP8073, intercepted in France from plants imported from Mexico, three plasmids were identified, including two (plasmids pXF-P1.CFBP8073 and pXF-P2.CFBP8073) not previously described in X. fastidiosa and one (pXF5823.CFBP8073) almost identical to a plasmid described in a X. fastidiosa strain from citrus. Plasmids found in the Spanish strains here were similar to those described previously in other strains from the same subspecies and ST1 isolated in the Balearic Islands and the United States. The genome resources from this work will assist in further studies on the role of plasmids in the epidemiology, ecology, and evolution of this plant pathogen.


Asunto(s)
Enfermedades de las Plantas , Xylella , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Europa (Continente) , Italia , Xylella/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA