Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.062
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39165017

RESUMEN

Abstract: In January 2023, an outbreak of Yersinia enterocolitica in residential aged care facilities (RACF) was identified by the Gold Coast Public Health Unit and confirmed using whole genome sequencing. During the outbreak period there were 11 confirmed and 14 probable cases of Y. enterocolitica notified in RACF and 30 suspected cases with compatible illness. Eleven cases (20%) were confirmed as Biotype 1A non-typable (BT1A NT) sequence type (ST) 278 within 4-15 single nucleotide polymorphisms (SNP) of each other. Combined epidemiological, trace-back and laboratory investigations identified nutritional milkshakes, stored at ideal growing conditions for Yersinia and given to vulnerable RACF residents, as the likely outbreak vehicle. This highlights that Y. enterocolitica Biotype 1A can be pathogenic in humans and transmission via atypical sources should be considered in outbreak investigations. This report outlines the response and challenges associated with investigating outbreaks in aged care.


Asunto(s)
Brotes de Enfermedades , Hogares para Ancianos , Yersiniosis , Yersinia enterocolitica , Humanos , Yersiniosis/epidemiología , Anciano , Yersinia enterocolitica/genética , Yersinia enterocolitica/aislamiento & purificación , Secuenciación Completa del Genoma , Anciano de 80 o más Años , Polimorfismo de Nucleótido Simple , Femenino , Masculino , Microbiología de Alimentos
2.
BMC Bioinformatics ; 25(1): 280, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192191

RESUMEN

BACKGROUND: Commonly used approaches for genomic investigation of bacterial outbreaks, including SNP and gene-by-gene approaches, are limited by the requirement for background genomes and curated allele schemes, respectively. As a result, they only work on a select subset of known organisms, and fail on novel or less studied pathogens. We introduce refMLST, a gene-by-gene approach using the reference genome of a bacterium to form a scalable, reproducible and robust method to perform outbreak investigation. RESULTS: When applied to multiple outbreak causing bacteria including 1263 Salmonella enterica, 331 Yersinia enterocolitica and 6526 Campylobacter jejuni genomes, refMLST enabled consistent clustering, improved resolution, and faster processing in comparison to commonly used tools like chewieSnake. CONCLUSIONS: refMLST is a novel multilocus sequence typing approach that is applicable to any bacterial species with a public reference genome, does not require a curated scheme, and automatically accounts for genetic recombination. AVAILABILITY AND IMPLEMENTATION: refMLST is freely available for academic use at https://bugseq.com/academic .


Asunto(s)
Técnicas de Tipificación Bacteriana , Tipificación de Secuencias Multilocus , Tipificación de Secuencias Multilocus/métodos , Técnicas de Tipificación Bacteriana/métodos , Genoma Bacteriano/genética , Salmonella enterica/genética , Salmonella enterica/clasificación , Campylobacter jejuni/genética , Campylobacter jejuni/clasificación , Brotes de Enfermedades , Yersinia enterocolitica/genética , Yersinia enterocolitica/clasificación , Programas Informáticos
3.
Infect Genet Evol ; 123: 105652, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103026

RESUMEN

PURPOSE: We aimed to characterise Yersinia enterocolitica from human clinical specimens in Switzerland using epidemiological, microbiological and whole-genome sequencing (WGS) data. METHODS: Isolates (n = 149) were collected between January 2019 and December 2023. Epidemiological data was noted and strains were characterized by biochemical and serological typing, antimicrobial susceptibility testing (AST), and WGS-based analysis. RESULTS: Most of the isolates (86%) were from stool specimens and 52% were from male patients. The patients' median age was 28 years (range < 1-94 years). Typing assigned the isolates to bioserotype 4/O:3 (44%), biotype 1A (34%), bioserotype 2/O:9 (21%), and bioserotype 3/O:3 (1%). WGS identified Y. enterocolitica (n = 147), Y. alsatica (n = 1) and Y. proxima (n = 1). Seven isolates were multidrug resistant (MDR) and harboured plasmid pAB829 carrying aph(3″)-Ib, aph(6)-Id, and tet(Y) (n = 1), pAC120 carrying aph(6)-Id and tet(A) (n = 2), or a 12.6 kb Tn2670-like transposon containing catA1, aadA12, sul1, and qacEΔ1 (n = 4). Virulence factors (VFs) included ail (n = 99), invB, (n = 145), ystA (n = 99), ystB (n = 48) and pYV-associated VFs (n = 93). MLST and cgMLST analysis showed that BT 1A strains consisted of several STs and were highly diverse, whereas BT 2/O:9 strains were all ST12 and clustered closely, and BT 4/O:3 strains mostly belonged to ST18 but were more diverse. SNP analysis revealed two highly clonal BT 4/O:3 subpopulations with wide spatio-temporal distribution. CONCLUSIONS: Y. enterocolitica BT 1A, BT 2/O:9 and BT 4/O:3 are frequently associated with human yersiniosis in Switzerland. WGS-based subtyping of Y. enterocolitica is a powerful tool to explore the genetic diversity and the pathogenic potential of human isolates.


Asunto(s)
Genoma Bacteriano , Secuenciación Completa del Genoma , Yersiniosis , Yersinia enterocolitica , Humanos , Yersinia enterocolitica/genética , Yersinia enterocolitica/efectos de los fármacos , Yersinia enterocolitica/clasificación , Yersinia enterocolitica/aislamiento & purificación , Suiza/epidemiología , Yersiniosis/microbiología , Yersiniosis/epidemiología , Adulto , Anciano , Masculino , Persona de Mediana Edad , Adolescente , Femenino , Anciano de 80 o más Años , Adulto Joven , Lactante , Preescolar , Niño , Filogenia , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
4.
Food Res Int ; 192: 114789, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147464

RESUMEN

Yersinia enterocolitica (Ye) is a foodborne pathogen isolated from humans, food, animals, and the environment. Yersiniosis is the third most frequently reported foodborne zoonosis in the European Union. Ye species are divided into six biotypes 1A, 1B, 2, 3, 4, and 5, based on biochemical reactions and about 70 serotypes. Biotype 1A is non-pathogenic, 1B is highly pathogenic, and biotypes 2-5 have moderate or low pathogenicity. The reference analysis method for detecting pathogenic Ye species underestimates the presence of the pathogen due to similarities between Yersinia enterocolitica-like species and other Yersiniaceae and/or Enterobacteriaceae, low concentrations of distribution pathogenic strains and the heterogeneity of Yersinia enterocolitica species. In this study, the real-time PCR method ISO/TS 18867 to identify pathogenic biovars of Ye in bivalve molluscs was validated. The sensitivity, specificity and accuracy of the molecular method were evaluated using molluscs experimentally contaminated. The results fully agree with those obtained with the ISO 10273 method. Finally, we evaluated the presence of Ye in seventy commercial samples of bivalve molluscs collected in the Gulf of Naples using ISO/TS 18867. Only one sample tested resulted positive for the ail gene, which is considered the target gene for detection of pathogenic Ye according to ISO/TS 18867. Additionally, the presence of the ystB gene, used as target for Ye biotype 1A, was assessed in all samples using a real-time PCR SYBR Green platform. The results showed amplification ystB gene aim two samples.


Asunto(s)
Bivalvos , Reacción en Cadena en Tiempo Real de la Polimerasa , Yersinia enterocolitica , Yersinia enterocolitica/genética , Yersinia enterocolitica/aislamiento & purificación , Yersinia enterocolitica/clasificación , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Bivalvos/microbiología , Italia , Microbiología de Alimentos , Benzotiazoles , ADN Bacteriano/genética , Compuestos Orgánicos , Diaminas , Reproducibilidad de los Resultados , Contaminación de Alimentos/análisis , Sensibilidad y Especificidad , Mariscos/microbiología , Quinolinas
5.
J Clin Microbiol ; 62(8): e0004024, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38990041

RESUMEN

Yersinia enterocolitica (Y. enterocolitica) is the most frequent etiological agent of yersiniosis and has been responsible for several national outbreaks in Norway and elsewhere. A standardized high-resolution method, such as core genome Multilocus Sequence Typing (cgMLST), is needed for pathogen traceability at the national and international levels. In this study, we developed and implemented a cgMLST scheme for Y. enterocolitica. We designed a cgMLST scheme in SeqSphere + using high-quality genomes from different Y. enterocolitica biotype sublineages. The scheme was validated if more than 95% of targets were found across all tested Y. enterocolitica: 563 Norwegian genomes collected between 2012 and 2022 and 327 genomes from public data sets. We applied the scheme to known outbreaks to establish a threshold for identifying major complex types (CTs) based on the number of allelic differences. The final cgMLST scheme included 2,582 genes with a median of 97.9% (interquartile range 97.6%-98.8%) targets found across all tested genomes. Analysis of outbreaks identified all outbreak strains using single linkage clustering at four allelic differences. This threshold identified 311 unique CTs in Norway, of which CT18, CT12, and CT5 were identified as the most frequently associated with outbreaks. The cgMLST scheme showed a very good performance in typing Y. enterocolitica using diverse data sources and was able to identify outbreak clusters. We recommend the implementation of this scheme nationally and internationally to facilitate Y. enterocolitica surveillance and improve outbreak response in national and cross-border outbreaks.


Asunto(s)
Brotes de Enfermedades , Genoma Bacteriano , Tipificación de Secuencias Multilocus , Yersiniosis , Yersinia enterocolitica , Yersinia enterocolitica/genética , Yersinia enterocolitica/clasificación , Yersinia enterocolitica/aislamiento & purificación , Tipificación de Secuencias Multilocus/métodos , Humanos , Yersiniosis/epidemiología , Yersiniosis/microbiología , Yersiniosis/diagnóstico , Noruega/epidemiología , Genoma Bacteriano/genética , Monitoreo Epidemiológico , Epidemiología Molecular/métodos , Genotipo , Técnicas de Tipificación Bacteriana/métodos
6.
J Microbiol Biotechnol ; 34(8): 1599-1608, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39081257

RESUMEN

Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.


Asunto(s)
Familia de Multigenes , Antígenos O , Serogrupo , Factores de Virulencia , Yersiniosis , Yersinia enterocolitica , Yersinia enterocolitica/genética , Yersinia enterocolitica/patogenicidad , Yersinia enterocolitica/clasificación , Antígenos O/genética , Factores de Virulencia/genética , Virulencia/genética , Yersiniosis/microbiología , Humanos , Microbiología de Alimentos , Proteínas Bacterianas/genética , Serotipificación
7.
Sci Rep ; 14(1): 16708, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030251

RESUMEN

Controlling foodborne pathogens in buffalo milk is crucial for ensuring food safety. This study estimated the prevalence of nine target genes representing seven critical foodborne bacteria in milk and milk products, and identified factors associated with their presence in buffalo milk chain nodes in Bangladesh. One hundred and forty-three milk samples from bulk tank milk (n = 34), middlemen (n = 37), milk collection centers (n = 37), and milk product shops (n = 35) were collected and analyzed using RT-PCR. Escherichia (E.) coli, represented through yccT genes, was the most prevalent throughout the milk chain (81-97%). Chi-squared tests were performed to identify the potential risk factors associated with the presence of foodborne bacteria encoded for different genes. At the middleman level, the prevalence of E. coli was associated with the Mymensingh, Noakhali, and Bhola districts (P = 0.01). The prevalence of Listeria monocytogenes, represented through inlA genes, and Yersinia (Y.) enterocolitica, represented through yst genes, were the highest at the farm level (65-79%). The prevalence of both bacteria in bulk milk was associated with the Noakhali and Bhola districts (P < 0.05). The prevalence of Y. enterocolitica in bulk milk was also associated with late autumn and spring (P = 0.01) and was higher in buffalo-cow mixed milk than in pure buffalo milk at the milk collection center level (P < 0.01). The gene stx2 encoding for Shiga toxin-producing (STEC) E. coli was detected in 74% of the milk products. At the middleman level, the prevalence of STEC E. coli was associated with the use of cloths or tissues when drying milk containers (P = 0.01). Salmonella enterica, represented through the presence of invA gene, was most commonly detected (14%) at the milk collection center. The use of plastic milk containers was associated with a higher prevalence of Staphylococcus aureus, represented through htrA genes, at milk product shops (P < 0.05). These results suggest that raw milk consumers in Bangladesh are at risk if they purchase and consume unpasteurized milk.


Asunto(s)
Búfalos , Microbiología de Alimentos , Leche , Búfalos/microbiología , Animales , Leche/microbiología , Bangladesh , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Yersinia enterocolitica/genética , Yersinia enterocolitica/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación
8.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703997

RESUMEN

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Asunto(s)
Proteínas Bacterianas , Tirosina , Yersinia , Glicosilación , Humanos , Yersinia/metabolismo , Yersinia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Tirosina/metabolismo , Tirosina/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Proteína de Unión al GTP rhoA/metabolismo , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/genética , Animales , Células HeLa , Ratones , Cristalografía por Rayos X , Yersiniosis/metabolismo , Yersiniosis/microbiología
9.
Microbiol Spectr ; 12(6): e0050424, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38651883

RESUMEN

Enteric yersiniosis, the third most common food-borne zoonosis in Europe, is mainly caused by the pathogen Yersinia enterocolitica. In France, the yersiniosis microbiological surveillance is conducted at the Yersinia National Reference Laboratory (YNRL). Since 2017, isolates have been characterized by whole genome sequencing (WGS) followed by a 500-gene Yersinia-cgMLST. We report here the data of the WGS-based surveillance on Y. enterocolitica isolates for the 2017-2021 period. The YNRL characterized 7,642 Y. enterocolitica strains distributed in 2,497 non-pathogenic isolates from lineages 1Aa and 1Ab, and 5,145 specimens belonging to 8 pathogenic lineages. Among pathogenic isolates, lineage 4 was the most common (87.2%) followed by lineages 2/3-9b (10.6%), 2/3-5a (1.2%), 2/3-9a (0.6%), 3-3b, 3-3c, 1B, and 3-3d (0.1% per each). Importantly, we developed a routine surveillance system based on a new typing method consisting of a 1,727-genes core genome Multilocus Sequence Typing (cgMLST) specific to the species Y. enterocolitica followed by isolate clustering. Thresholds of allelic distances (AD) were determined and fixed for the clustering of isolates: AD ≤ 5 for lineages 4, 2/3-5a, and 2/3-9a, and AD ≤ 3 for lineage 2/3-9b. Clustering programs were implemented in 2019 in routine surveillance to detect genomic clusters of pathogenic isolates. In total, 419 clusters with at least 2 isolates were identified, representing 2,504 of the 3,503 isolates characterized between 2019 and 2021. Most clusters (n = 325) comprised 2 to 5 isolates. The new typing method proved to be useful for the molecular investigation of unusual grouping of cases as well as for the detection of genomic clusters in routine surveillance. IMPORTANCE: We describe here the new typing method used for molecular surveillance of Yersinia enterocolitica infections in France based on a novel core genome Multilocus Sequence Typing (cgMLST) specific to Y. enterocolitica species. This method can reliably identify the pathogenic Y. enterocolitica subspecies and compare the isolates with a high discriminatory power. Between 2017 and 2021, 5,145 pathogenic isolates belonging to 8 lineages were characterized and lineage 4 was by far the most common followed by lineage 2/3-9b. A clustering program was implemented, and detection thresholds were cross-validated by the molecular and epidemiological investigation of three unusual groups of Y. enterocolitica infections. The routine molecular surveillance system has been able to detect genomic clusters, leading to epidemiological investigations.


Asunto(s)
Brotes de Enfermedades , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , Yersiniosis , Yersinia enterocolitica , Yersinia enterocolitica/genética , Yersinia enterocolitica/aislamiento & purificación , Yersinia enterocolitica/clasificación , Yersiniosis/epidemiología , Yersiniosis/microbiología , Humanos , Francia/epidemiología , Tipificación de Secuencias Multilocus/métodos , Filogenia , Genoma Bacteriano/genética , Genómica/métodos , Monitoreo Epidemiológico
10.
Ir J Med Sci ; 193(4): 1885-1890, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38381378

RESUMEN

INTRODUCTION: Three Yersinia species were identified from samples of drinking water from diverse geographic regions of Ireland. Conventional commercial biochemical identification systems classified them as Yersinia enterocolitica. Since this organism is the most common cause of bacterial gastroenteritis in some countries, further investigation was warranted. The aim of the study was to provide a microbial characterisation of three Yersinia species, to determine their pathogenicity, and to review the incidence rate of Yersinia enterocolitica detection in our region. METHODS: Organism identification was performed using conventional commercial diagnostic systems MALDI-TOF, API 20E, API 50CHE, TREK Sensititre GNID and Vitek 2 GN, and whole genome sequencing (WGS) was performed. Historical data for detections was extracted from the lab system for 2008 to 2023. RESULTS: All three isolates gave "good" identifications of Yersinia enterocolitica on conventional systems. Further analysis by WGS matched two of the isolates with recently described Yersinia proxima, and the third was a member of the non-pathogenic Yersinia enterocolitica clade 1Aa. DISCUSSION: Our analysis of these three isolates deemed them to be Yersinia species not known currently to be pathogenic, but determining this necessitated the use of next-generation sequencing and advanced bioinformatics. Our work highlights the importance of having this technology available to public laboratories, either locally or in a national reference laboratory. The introduction of molecular technologies for the detection of Yersinia species may increase the rate of detections. Accurate identification of significant pathogens in environmental, public health and clinical microbiology laboratories is critically important for the protection of society.


Asunto(s)
Agua Potable , Yersinia enterocolitica , Yersinia enterocolitica/aislamiento & purificación , Yersinia enterocolitica/genética , Irlanda/epidemiología , Agua Potable/microbiología , Humanos , Yersiniosis/epidemiología , Yersiniosis/microbiología , Secuenciación Completa del Genoma , Microbiología del Agua
11.
Future Microbiol ; 19: 377-384, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38305237

RESUMEN

Background: The present study aims to determine the presence of Yersinia spp., Yersinia pestis, Yersinia enterocolitica pathogen, Listeria monocytogenes, Salmonella spp., Shigella spp., Francisella tularensis and Borrelia spp. in brown rats of Tehran, Iran. Methods: PCR was used to detect various bacteria in 100 brown rats, Also, ELISA was used to detect antibodies against the F. tularensis and Borrelia spp. Results: A total of 16% and 13% of fecal samples were positive for Yersinia spp. and Y. enterocolitica pathogen. ELISA results were negative for F. tularensis and Borrelia. No specific antibodies (IgG) were against these bacteria. Conclusion: According to the results of our analysis, rats are significant transmitters and carriers of a variety of illnesses that can spread to both people and other animals.


Asunto(s)
Listeria monocytogenes , Shigella , Yersinia enterocolitica , Humanos , Animales , Ratas , Yersinia enterocolitica/genética , Irán/epidemiología , Salmonella
12.
Nat Microbiol ; 9(1): 185-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172622

RESUMEN

Bacteria use type III secretion injectisomes to inject effector proteins into eukaryotic target cells. Recruitment of effectors to the machinery and the resulting export hierarchy involve the sorting platform. These conserved proteins form pod structures at the cytosolic interface of the injectisome but are also mobile in the cytosol. Photoactivated localization microscopy in Yersinia enterocolitica revealed a direct interaction of the sorting platform proteins SctQ and SctL with effectors in the cytosol of live bacteria. These proteins form larger cytosolic protein complexes involving the ATPase SctN and the membrane connector SctK. The mobility and composition of these mobile pod structures are modulated in the presence of effectors and their chaperones, and upon initiation of secretion, which also increases the number of injectisomes from ~5 to ~18 per bacterium. Our quantitative data support an effector shuttling mechanism, in which sorting platform proteins bind to effectors in the cytosol and deliver the cargo to the export gate at the membrane-bound injectisome.


Asunto(s)
Sistemas de Secreción Tipo III , Yersinia enterocolitica , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Citosol/metabolismo , Transporte de Proteínas , Microscopía Fluorescente
13.
Mol Microbiol ; 121(2): 304-323, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38178634

RESUMEN

In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.


Asunto(s)
Sistemas de Secreción Tipo III , Yersinia enterocolitica , Animales , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Secretina/metabolismo , Especificidad por Sustrato , Yersinia enterocolitica/genética , Unión Proteica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
14.
Int J Food Microbiol ; 412: 110554, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38176093

RESUMEN

Yersinia enterocolitica is an underreported cause of foodborne gastroenteritis. Little is known of the diversity of Y. enterocolitica isolated from food and which food commodities contribute to human disease. In this study, Y. enterocolitica was isolated from 37/50 raw chicken, 8/10 pork, 8/10 salmon and 1/10 leafy green samples collected at retail in the UK. Up to 10 presumptive Y. enterocolitica isolates per positive sample underwent whole genome sequencing (WGS) and were compared with publicly available genomes. In total, 207 Y. enterocolitica isolates were analyzed and belonged to 38 sequence types (STs). Up to five STs of Y. enterocolitica were isolated from individual food samples and isolates belonging to the same sample and ST differed by 0-74 single nucleotide polymorphisms (SNPs). Biotype was predicted for 205 (99 %) genomes that all belonged to biotype 1A, previously described as non-pathogenic. However, around half (51 %) of food samples contained isolates belonging to the same ST as previously isolated from UK human cases. The closest human-derived isolates shared between 17 and 7978 single nucleotide polymorphisms (SNPs) with the food isolates. Extensive food surveillance is required to determine what food sources are responsible for Y. enterocolitica infections and to re-examine the role of biotype 1A as a human pathogen.


Asunto(s)
Yersiniosis , Yersinia enterocolitica , Humanos , Yersinia enterocolitica/genética , Cadena Alimentaria , Microbiología de Alimentos , Alimentos , Polimorfismo de Nucleótido Simple , Yersiniosis/veterinaria , Yersiniosis/epidemiología
15.
Ann Ist Super Sanita ; 59(4): 280-285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38088395

RESUMEN

INTRODUCTION: Yersinia enterocolitica (Ye) species is divided into 6 biotypes (BT), 1A, 1B, 2, 3, 4, 5 classified based on biochemical reactions and about 70 serotypes, classified based on the structure of the lipopolysaccharide O-antigen. The BT1A is considered non-pathogenic, while the BT 1B-5 are considered pathogenic. METHODS: Evaluate the distribution of eleven chromosomal and plasmid virulence genes, ail, ystA, ystB, myfA, hreP, fes, fepD, ymoA, sat, virF and yadA, in 87 Ye strains isolated from food, animals and humans, using two SYBR Green real-time PCR platforms. RESULTS: The main results showed the presence of the ail and ystA genes in all the pathogenic bioserotypes analyzed. The ystB, on the other hand, was identified in all non-pathogenic strains biotype 1A. The target fes, fepD, sat and hreP were found in both pathogenic biotypes and in BT1A strains. The myfA gene was found in all pathogenic biotype and in some Ye BT1A strains. The virF and yadA plasmid genes were mainly detected in bioserotype 4/O:3 and 2/O:9, while ymoA was identified in all strains. CONCLUSIONS: The two molecular platforms could be used to better define some specific molecular targets for the characterization and rapid detection of Ye in different sources which important implications for food safety and animal and human health.


Asunto(s)
Yersinia enterocolitica , Animales , Humanos , Virulencia/genética , Yersinia enterocolitica/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Viruses ; 15(10)2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37896796

RESUMEN

Telomere phages are a small group of temperate phages, whose prophages replicate as a linear plasmid with covalently closed ends. They have been isolated from some Enterobacteriaceae and from bacterial species living in aquatic environments. Phage PY54 was the first Yersinia (Y.) enterocolitica telomere phage isolated from a nonpathogenic O:5 strain, but recently a second telomeric Yersinia phage (vB_YenS_P840) was isolated from a tonsil of a wild boar in Germany. Both PY54 and vB_YenS_P840 (P840) have a siphoviridal morphology and a similar genome organization including the primary immunity region immB and telomere resolution site telRL. However, whereas PY54 only possesses one prophage repressor for the lysogenic cycle, vB_YenS_P840 encodes two. The telRL region of this phage was shown to be processed by the PY54 protelomerase under in vivo conditions, but unlike with PY54, a flanking inverted repeat was not required for processing. A further substantial difference between the phages is their host specificity. While PY54 infects Y. enterocolitica strains belonging to the serotypes O:5 and O:5,27, vB_YenS_P840 exclusively lyses O:3 strains. As the tail fiber and tail fiber assembly proteins of the phages differ significantly, we introduced the corresponding genes of vB_YenS_P840 by transposon mutagenesis into the PY54 genome and isolated several mutants that were able to infect both serotypes, O:5,27 and O:3.


Asunto(s)
Bacteriófagos , Yersinia enterocolitica , Bacteriófagos/genética , Yersinia enterocolitica/genética , Profagos/genética , Lisogenia , Telómero
17.
Appl Microbiol Biotechnol ; 107(23): 7165-7180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728625

RESUMEN

The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections. KEY POINTS: • Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica. • Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. • Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.


Asunto(s)
Yersiniosis , Yersinia enterocolitica , Humanos , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Lipopolisacáridos/metabolismo , Virulencia , Perfilación de la Expresión Génica , Fosfatos de Inositol/metabolismo , Yersiniosis/microbiología
18.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569327

RESUMEN

DksA is a proteobacterial regulator that binds directly to the secondary channel of RNA polymerase with (p)ppGpp and is responsible for various bacterial physiological activities. While (p)ppGpp is known to be involved in the regulation and response of fatty acid metabolism pathways in many foodborne pathogens, the role of DksA in this process has yet to be clarified. This study aimed to characterize the function of DksA on fatty acid metabolism and cell membrane structure in Yersinia enterocolitica. Therefore, comparison analysis of gene expression, growth conditions, and membrane permeabilization among the wide-type (WT), DksA-deficient mutant (YEND), and the complemented strain was carried out. It confirmed that deletion of DksA led to a more than four-fold decrease in the expression of fatty acid degradation genes, including fadADEIJ. Additionally, YEND exhibited a smaller growth gap compared to the WT strain at low temperatures, indicating that DksA is not required for the growth of Y. enterocolitica in cold environments. Given that polymyxin B is a cationic antimicrobial peptide that targets the cell membrane, the roles of DksA under polymyxin B exposure were also characterized. It was found that DksA positively regulates the integrity of the inner and outer membranes of Y. enterocolitica under polymyxin B, preventing the leakage of intracellular nucleic acids and proteins and ultimately reducing the sensitivity of Y. enterocolitica to polymyxin B. Taken together, this study provides insights into the functions of DksA and paves the way for novel fungicide development.


Asunto(s)
Proteínas de Escherichia coli , Yersinia enterocolitica , Polimixina B/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Guanosina Pentafosfato/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli/metabolismo
19.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446335

RESUMEN

Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica.


Asunto(s)
ARN Pequeño no Traducido , Yersinia enterocolitica , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Hierro/metabolismo , Homeostasis/genética , Regulación Bacteriana de la Expresión Génica
20.
J Microbiol Methods ; 211: 106779, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406739

RESUMEN

This study aimed to develop multiplex real-time PCR methods using SYBR Green and TaqMan probes for rapid and sensitive diagnosis, differentiating three pathogenic Yersinia groups such as highly pathogenic Y. enterocolitica, low pathogenic Y. enterocolitica, and Y. pseudotuberculosis. Specific primer and probe combinations for differentiating three pathogenic Yersinia groups were designed from three chromosomally encoded genes (ail, fyuA, and inv). Twenty-six stains of pathogenic Yersinia species including 6 strains of low pathogenic Y. enterocolitica serotypes, 7 strains of highly pathogenic Y. enterocolitica serotypes, and 13 strains of pathogenic Y. pseudotuberculosis were used for specificity testing. Specific patterns of real-time amplification signals distinguished three pathogenic Yersinia groups. A detection limit of approximately 101 colony forming units (CFU) /reaction of genomic DNA was determined based on plate counts. Furthermore, the multiplex real-time PCR methods also detected Y. enterocolitica O:8 from the DNA extracted from spiked rabbit blood samples and potentially infected wild rodent fecal samples. These results demonstrated that the multiplex real-time PCR methods developed in this study are useful for rapid detection and differentiation of three pathogenic Yersinia groups. Therefore, these methods provide a new monitoring and detection capability to understand the epidemiology of pathogenic Yersinia and to diagnose three pathogenic Yersinia groups.


Asunto(s)
Yersinia enterocolitica , Infecciones por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animales , Conejos , Yersinia pseudotuberculosis/genética , Yersinia enterocolitica/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Yersinia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA