Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.887
Filtrar
1.
Theor Appl Genet ; 137(6): 132, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750241

RESUMEN

KEY MESSAGE: The Dof22 gene encoding a deoxyribonucleic acid binding with one finger in maize, which is associated with its drought tolerance. The identification of drought stress regulatory genes is essential for the genetic improvement of maize yield. Deoxyribonucleic acid binding with one finger (Dof), a plant-specific transcription factor family, is involved in signal transduction, morphogenesis, and environmental stress responses. In present study, by weighted correlation network analysis (WGCNA) and gene co-expression network analysis, 15 putative Dof genes were identified from maize that respond to drought and rewatering. A real-time fluorescence quantitative PCR showed that these 15 genes were strongly induced by drought and ABA treatment, and among them ZmDof22 was highly induced by drought and ABA treatment. Its expression level increased by nearly 200 times after drought stress and more than 50 times after ABA treatment. After the normal conditions were restored, the expression levels were nearly 100 times and 40 times of those before treatment, respectively. The Gal4-LexA/UAS system and transcriptional activation analysis indicate that ZmDof22 is a transcriptional activator regulating drought tolerance and recovery ability in maize. Further, overexpressed transgenic and mutant plants of ZmDof22 by CRISPR/Cas9, indicates that the ZmDof22, improves maize drought tolerance by promoting stomatal closure, reduces water loss, and enhances antioxidant enzyme activity by participating in the ABA pathways. Taken together, our findings laid a foundation for further functional studies of the ZmDof gene family and provided insights into the role of the ZmDof22 regulatory network in controlling drought tolerance and recovery ability of maize.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estomas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/enzimología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Antioxidantes/metabolismo , Plantas Modificadas Genéticamente/genética , Ácido Abscísico/metabolismo , Resistencia a la Sequía
2.
Funct Plant Biol ; 512024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38758970

RESUMEN

Heat stress represents a significant environmental challenge that restricts maize (Zea mays ) growth and yield on a global scale. Within the plant kingdom, the AGC gene family, encoding a group of protein kinases, has emerged as crucial players in various stress responses. Nevertheless, a comprehensive understanding of AGC genes in Z. mays under heat-stress conditions remains elusive. A genome-wide analysis was done using bioinformatics techniques to identify 39 AGC genes in Z. mays , categorising them into three subfamilies based on their conserved domains. We investigated their phylogenetic relationships, gene structures (including intron-exon configurations), and expression patterns. These genes are likely involved in diverse signalling pathways, fulfilling distinct roles when exposed to heat stress conditions. Notably, most ZmAGC1.5, ZmAGC1.9, ZmNDR3, ZmNDR5 and ZmIRE3 exhibited significant changes in expression levels under heat stress, featuring a high G-box ratio. Furthermore, we pinpointed a subset of AGC genes displaying highly coordinated expression, implying their potential involvement in the heat stress response pathway. Our study offers valuable insights into the contribution of AGC genes to Z. mays 's heat stress response, thus facilitating the development of heat-tolerant Z. mays varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/fisiología , Respuesta al Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genes de Plantas , Adaptación Fisiológica/genética
3.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732175

RESUMEN

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Resistencia a la Sequía
4.
Plant Physiol Biochem ; 211: 108696, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705046

RESUMEN

Drought is a significant abiotic stressor that limits maize (Zea mays L.) growth and development. Thus, enhancing drought tolerance is critical for promoting maize production. Our findings demonstrated that ZmMYB39 is an MYB transcription factor with transcriptional activation activity. Drought stress experiments involving ZmMYB39 overexpression and knockout lines indicated that ZmMYB39 positively regulated drought stress tolerance in maize. DAP-Seq, EMSA, dual-LUC, and RT-qPCR provided initial insights into the molecular regulatory mechanisms by which ZmMYB39 enhances drought tolerance in maize. ZmMYB39 directly promoted the expression of ZmP5CS1, ZmPOX1, ZmSOD2, ZmRD22, ZmNAC49, and ZmDREB2A, which are involved in stress resistance. ZmMYB39 enhanced drought tolerance by interacting with and promoting the expression of ZmFNR1, ZmHSP20, and ZmDOF6. Our study offers a theoretical basis for understanding the molecular regulatory networks involved in maize drought stress response. Furthermore, ZmMYB39 serves as a valuable genetic resource for breeding drought-resistant maize.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Plantas Modificadas Genéticamente , Resistencia a la Sequía
5.
Sci Total Environ ; 933: 173143, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735336

RESUMEN

In a warming climate, high temperature stress greatly threatens crop yields. Maize is critical to food security, but frequent extreme heat events coincide temporally and spatially with the period of kernel number determination (e.g., flowering stage), greatly limiting maize yields. In this context, how to increase or at least maintain maize yield has become more important. Nitrogen fertilizer (N) is widely used to improve maize yields, but its effect in heat stress is unclear. For this, we collected 1536 pairs of comparisons from 113 studies concerning N conducted in the past 20 years over China. We classified the data into two groups - without high temperature stress (NHT) and with high temperature stress during the critical period for maize kernel number determination (HT) - based on the national meteorological data. We comprehensively evaluated N effects on grain yield under HT and NHT using meta-analysis. The effect of N on maize yield became significantly smaller in HT than that in NHT. In NHT, soil characteristics, crop management practices, and climatic conditions all significantly affected N effects on maize yield, but in HT, only a few factors such as soil organic matter and mean annual precipitation significantly affected N effects. Hence, it is difficult to improve N effect by improving soil characteristics and crop management when meeting with high temperature stress during flowering. On average, N effect increased with increased N input, but there were respective N input thresholds in NHT and HT, beyond which N effects on maize yield remained stable. According to the thresholds, it is speculated that moderately reducing N input (~20 %) likely increased high temperature tolerance of maize during flowering. These findings have important implications for the optimization of N management under a warming climate.


Asunto(s)
Nitrógeno , Zea mays , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , China , Fertilizantes , Calor , Respuesta al Choque Térmico/fisiología , Cambio Climático
6.
J Plant Physiol ; 297: 154261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705078

RESUMEN

Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.


Asunto(s)
Clorofila A , Clorofila , Genotipo , Nitrógeno , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Clorofila/metabolismo , Clorofila A/metabolismo , Fotosíntesis
7.
Plant Physiol Biochem ; 211: 108684, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710113

RESUMEN

Abscisic acid-, stress-, and ripening-induced (ASR) proteins in plants play a significant role in plant response to diverse abiotic stresses. However, the functions of ASR genes in maize remain unclear. In the present study, we identified a novel drought-induced ASR gene in maize (ZmASR1) and functionally characterized its role in mediating drought tolerance. The transcription of ZmASR1 was upregulated under drought stress and abscisic acid (ABA) treatment, and the ZmASR1 protein was observed to exhibit nuclear and cytoplasmic localization. Moreover, ZmASR1 knockout lines generated with the CRISPR-Cas9 system showed lower ROS accumulation, higher ABA content, and a higher degree of stomatal closure than wild-type plants, leading to higher drought tolerance. Transcriptome sequencing data indicated that the significantly differentially expressed genes in the drought treatment group were mainly enriched in ABA signal transduction, antioxidant defense, and photosynthetic pathway. Taken together, the findings suggest that ZmASR1 negatively regulates drought tolerance and represents a candidate gene for genetic manipulation of drought resistance in maize.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo
8.
Biochem Biophys Res Commun ; 714: 149956, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663095

RESUMEN

BACKGROUND: Maize is a major cereal crop world widely, however, the yield of maize is frequently limited by dehydration and even death of plants, which resulted from osmotic stress such as drought and salinity. Dissection of molecular mechanisms controlling stress tolerance will enable plant scientists and breeders to increase crops yield by manipulating key regulatory components. METHODS: The candidate OSR1 gene was identified by map-based cloning. The expression level of OSR1 was verified by qRT-PCR and digital PCR in WT and osr1 mutant. Electrophoretic mobility shift assay, transactivation activity assay, subcellular localization, transcriptome analysis and physiological characters measurements were conducted to analyze the function of OSR1 in osmotic stress resistance in maize. RESULTS: The osr1 mutant was significantly less sensitive to osmotic stress than the WT plants and displayed stronger water-holding capacity, and the OSR1 homologous mutant in Arabidopsis showed a phenotype similar with maize osr1 mutant. Differentially expressed genes (DEGs) were identified between WT and osr1 under osmotic stress by transcriptome analysis, the expression levels of many genes, such as LEA, auxin-related factors, PPR family members, and TPR family members, changed notably, which may primarily involve in osmotic stress or promote root development. CONCLUSIONS: OSR1 may serve as a negative regulatory factor in response to osmotic stress in maize. The present study sheds new light on the molecular mechanisms of osmotic stress in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Estrés Fisiológico/genética , Perfilación de la Expresión Génica
9.
Sci Total Environ ; 932: 172555, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677420

RESUMEN

Microplastics (MPs) pose a significant threat to the function of agro-ecosystems. At present, research on MPs has mainly focused on the effects of different concentrations or types of MPs on a crop, while ignoring other environmental factors. In agricultural production, the application of nitrogen (N) fertilizer is an important means to maintain the high yield of crops. The effects of MPs and N on growth parameters, photosynthetic system, active oxygen metabolism, nutrient content, and ascorbate-glutathione (AsA-GSH) cycle of maize and wheat were studied in order to explicit whether N addition could effectively alleviate the effects of MPs on maize and wheat. The results showed that MPs inhibited the plant height of both maize and wheat, and MPs effects on physiological traits of maize were more severe than those of wheat, reflecting in reactive oxygen metabolism and restriction of photosynthetic capacity. Under the condition of N supply, AsA-GSH cycle of two plants has different response strategies to MPs: Maize promoted enzyme activity and co-accumulation of AsA and GSH, while wheat tended to consume AsA and accumulate GSH. N application induced slight oxidative stress on maize, which was manifested as an increase in hydrogen peroxide and malonaldehyde contents, and activities of polyphenol oxidase and peroxidase. The antioxidant capacity of maize treated with the combination of MPs + N was better than that treated with N or MPs alone. N could effectively alleviate the adverse effects of MPs on wheat by improving the antioxidant capacity.


Asunto(s)
Microplásticos , Nitrógeno , Oxidación-Reducción , Fotosíntesis , Triticum , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/efectos de los fármacos , Triticum/metabolismo , Fotosíntesis/efectos de los fármacos , Nitrógeno/metabolismo , Microplásticos/toxicidad , Glutatión/metabolismo , Fertilizantes , Homeostasis , Contaminantes del Suelo/toxicidad , Ácido Ascórbico/metabolismo , Estrés Oxidativo
10.
Sci Total Environ ; 929: 172416, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631627

RESUMEN

Widespread use of copper-based agrochemical may cause copper excessive accumulation in agricultural soil to seriously threaten crop production. Recently, fullerenols are playing important roles in helping crops build resistance to abiotic stresses by giving ingenious and successful resolutions. However, there is a lack of knowledge on their beneficial effects in crops under stresses induced by heavy metals. Herein, the visual observation of Cu2+-mediated assembly of fullerenols via electrostatic and coordination actions was carried out in vitro, showing that water-soluble nanocomplexes and water-insoluble cross-linking nanohybrids were selectively fabricated by precisely adjusting feeding ratios of fullerenols and CuSO4. Furthermore, maize simultaneous exposure of fullerenols and CuSO4 solutions was tested to investigate the comparative effects of seed germination and seedling growth relative to exposure of CuSO4 alone. Under moderate Cu2+ stresses (40 and 80 µM), fullerenols significantly mitigated the detrimental effects of seedlings, including phenotype, root and shoot elongation, biomass accumulation, antioxidant capacity, and Cu2+ uptake and copper transporter-related gene expressions in roots. Under 160 µM of Cu2+ as a stressor, fullerenols also accelerated germination of Cu2+-stressed seeds eventually up to the level of the control. Summarily, fullerenols can enhance tolerance of Cu2+-stressed maize mainly due to direct detoxification through fullerenol-Cu2+ interactions restraining the Cu2+ intake into roots and reducing free Cu2+ content in vivo, as well as fullerenol-maize interactions to enhance resistance by maintaining balance of reactive oxygen species and optimizing the excretion and transport of Cu2+. This will unveil valuable insights into the beneficial roles of fullerenols and its mechanism mode in alleviating heavy metal stress on crop plants.


Asunto(s)
Cobre , Plantones , Zea mays , Zea mays/efectos de los fármacos , Zea mays/fisiología , Cobre/toxicidad , Plantones/efectos de los fármacos , Contaminantes del Suelo , Fulerenos , Estrés Fisiológico , Germinación/efectos de los fármacos
11.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673880

RESUMEN

Drought is one of the major abiotic stresses with a severe negative impact on maize production globally. Understanding the genetic architecture of drought tolerance in maize is a crucial step towards the breeding of drought-tolerant varieties and a targeted exploitation of genetic resources. In this study, 511 quantitative trait loci (QTL) related to grain yield components, flowering time, and plant morphology under drought conditions, as well as drought tolerance index were collected from 27 published studies and then projected on the IBM2 2008 Neighbors reference map for meta-analysis. In total, 83 meta-QTL (MQTL) associated with drought tolerance in maize were identified, of which 20 were determined as core MQTL. The average confidence interval of MQTL was strongly reduced compared to that of the previously published QTL. Nearly half of the MQTL were confirmed by co-localized marker-trait associations from genome-wide association studies. Based on the alignment of rice proteins related to drought tolerance, 63 orthologous genes were identified near the maize MQTL. Furthermore, 583 candidate genes were identified within the 20 core MQTL regions and maize-rice homologous genes. Based on KEGG analysis of candidate genes, plant hormone signaling pathways were found to be significantly enriched. The signaling pathways can have direct or indirect effects on drought tolerance and also interact with other pathways. In conclusion, this study provides novel insights into the genetic and molecular mechanisms of drought tolerance in maize towards a more targeted improvement of this important trait in breeding.


Asunto(s)
Sequías , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/fisiología , Estrés Fisiológico/genética , Mapeo Cromosómico , Fenotipo , Genes de Plantas , Resistencia a la Sequía
12.
Plant Cell Rep ; 43(5): 126, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652181

RESUMEN

KEY MESSAGE: Innovatively, we consider stomatal detection as rotated object detection and provide an end-to-end, batch, rotated, real-time stomatal density and aperture size intelligent detection and identification system, RotatedeStomataNet. Stomata acts as a pathway for air and water vapor in the course of respiration, transpiration, and other gas metabolism, so the stomata phenotype is important for plant growth and development. Intelligent detection of high-throughput stoma is a key issue. Nevertheless, currently available methods usually suffer from detection errors or cumbersome operations when facing densely and unevenly arranged stomata. The proposed RotatedStomataNet innovatively regards stomata detection as rotated object detection, enabling an end-to-end, real-time, and intelligent phenotype analysis of stomata and apertures. The system is constructed based on the Arabidopsis and maize stomatal data sets acquired destructively, and the maize stomatal data set acquired in a non-destructive way, enabling the one-stop automatic collection of phenotypic, such as the location, density, length, and width of stomata and apertures without step-by-step operations. The accuracy of this system to acquire stomata and apertures has been well demonstrated in monocotyledon and dicotyledon, such as Arabidopsis, soybean, wheat, and maize. The experimental results that the prediction results of the method are consistent with those of manual labeling. The test sets, the system code, and their usage are also given ( https://github.com/AITAhenu/RotatedStomataNet ).


Asunto(s)
Arabidopsis , Fenotipo , Estomas de Plantas , Zea mays , Estomas de Plantas/fisiología , Zea mays/genética , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/fisiología
13.
Environ Sci Pollut Res Int ; 31(21): 30555-30568, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607480

RESUMEN

The root dielectric response was measured on a minute scale to assess its efficiency for monitoring short-term cadmium (Cd) toxicity non-destructively. Electrical capacitance (CR), dissipation factor (DR) and electrical conductance (GR) were detected during the 24 to 168 h after Cd treatment (0, 20, 50 mg Cd2+ kg-1 substrate) in potted maize, cucumber and pea. Stress was also evaluated by measuring leaf chlorophyll content, Fv/Fm and stomatal conductance (gs) in situ, and shoot and root mass and total root length after harvest. CR showed a clear diurnal pattern, reflecting the water uptake rate, and decreased significantly in response to excessive Cd due to impeded root growth, the reduced tissue permittivity caused by accelerated lignification, and root ageing. Cd exposure markedly increased DR, indicating greater conductive energy loss due to oxidative membrane damage and enhanced electrolyte leakage. GR, which was coupled with root hydraulic conductance and varied diurnally, was increased transiently by Cd toxicity due to enhanced membrane permeability, but declined thereafter owing to stress-induced leaf senescence and transpiration loss. The time series of impedance components indicated the comparatively high Cd tolerance of the applied maize and the sensitivity of pea cultivar, which was confirmed by visible shoot symptoms, repeated physiological investigations and biomass measurements. The results demonstrated the potential of single-frequency dielectric measurements to follow certain aspects of the stress response of different species on a fine timescale without plant injury. The approach can be combined with widely used plant physiological methods and could contribute to breeding crop genotypes with improved stress tolerance.


Asunto(s)
Cadmio , Raíces de Plantas , Cadmio/toxicidad , Raíces de Plantas/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/fisiología , Hojas de la Planta , Contaminantes del Suelo/toxicidad
14.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644487

RESUMEN

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Asunto(s)
Amaranthus , Carbón Orgánico , Medicago sativa , Suelo , Zea mays , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/fisiología , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Medicago sativa/fisiología , Suelo/química , Salinidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
15.
Sci Rep ; 14(1): 9361, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654091

RESUMEN

With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.


Asunto(s)
Glycine max , Fotosíntesis , Zea mays , Glycine max/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Celulosa/metabolismo , Lignina/metabolismo , Agricultura/métodos , Polisacáridos/metabolismo , Producción de Cultivos/métodos
16.
Sci Total Environ ; 927: 172205, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599397

RESUMEN

Adaptation measures are essential for reducing the impact of future climate risks on agricultural production systems. The present study focuses on implementing an adaptation strategy to mitigate the impact of future climate change on rainfed maize production in the Eastern Kansas River Basin (EKSRB), an important rainfed maize-producing region in the US Great Plains, which faces potential challenges of future climate risks due to a significant east-to-west aridity gradient. We used a calibrated CERES-Maize crop model to evaluate the impacts of baseline climate conditions (1985-2014), late-term future climate scenarios (under the SSP245 emission pathway and CMIP6 models), and a novel root proliferation adaptation strategy on regional maize yield and rainfall productivity. Changes in the plant root system by increasing the root density could lead to yield benefits, especially under drought conditions. Therefore, we modified the governing equation of soil root growth in the CERES-Maize model to reflect the genetic influence of a maize cultivar to improve root density by proliferation. Under baseline conditions, maize yield values ranged from 6522 to 12,849 kgha-1, with a regional average value of 9270 kgha-1. Projections for the late-term scenario indicate a substantial decline in maize yield (36 % to 50 %) and rainfall productivity (25 % to 42 %). Introducing a hypothetical maize cultivar by employing root proliferation as an adaptation strategy resulted in a 27 % increase in regional maize yield, and a 28 % increase in rainfall productivity compared to the reference cultivar without adaptation. We observed an indication of spatial dependency of maize yield and rainfall productivity on the regional precipitation gradient, with counties towards the east having an implicit advantage over those in the west. These findings offer valuable insights for the US Great Plains maize growers and breeders, guiding strategic decisions to adapt rainfed maize production to the region's impending challenges posed by climate change.


Asunto(s)
Cambio Climático , Productos Agrícolas , Raíces de Plantas , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Producción de Cultivos/métodos , Lluvia
17.
Plant Cell Environ ; 47(6): 2228-2239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38483021

RESUMEN

The selection of oviposition sites by female moths is crucial in shaping their progeny performance and survival, and consequently in determining insect fitness. Selecting suitable plants that promote the performance of the progeny is referred to as the Preference-Performance hypothesis (or 'mother-knows-best'). While root infestation generally reduces the performance of leaf herbivores, little is known about its impact on female oviposition. We investigated whether maize root infestation by the Western corn rootworm (WCR) affects the oviposition preference and larval performance of the European corn borer (ECB). ECB females used leaf volatiles to select healthy plants over WCR-infested plants. Undecane, a compound absent from the volatile bouquet of healthy plants, was the sole compound to be upregulated upon root infestation and acted as a repellent for first oviposition. ECB larvae yet performed better on plants infested below-ground than on healthy plants, suggesting an example of 'bad motherhood'. The increased ECB performance on WCR-infested plants was mirrored by an increased leaf consumption, and no changes in the plant primary or secondary metabolism were detected. Understanding plant-mediated interactions between above- and below-ground herbivores may help to predict oviposition decisions, and ultimately, to manage pest outbreaks in the field.


Asunto(s)
Larva , Mariposas Nocturnas , Oviposición , Hojas de la Planta , Raíces de Plantas , Compuestos Orgánicos Volátiles , Zea mays , Animales , Oviposición/efectos de los fármacos , Zea mays/fisiología , Zea mays/parasitología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Mariposas Nocturnas/fisiología , Femenino , Larva/fisiología , Raíces de Plantas/parasitología , Raíces de Plantas/fisiología , Hojas de la Planta/fisiología , Herbivoria
18.
Nat Plants ; 10(4): 567-571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499777

RESUMEN

Maize mutants of the centromeric histone H3 (CENP-A/CENH3) gene can form haploids that inherit only chromosomes of the pollinating parent but the cytoplasm from the female parent. We developed CENH3 haploid inducers carrying a dominant anthocyanin colour marker for efficient haploid identification and harbouring cytoplasmic male sterile cytoplasm, a type of cytoplasm that results in male sterility useful for efficient hybrid seed production. The resulting cytoplasmic male sterility cyto-swapping method provides a faster and cheaper way to convert commercial lines to cytoplasmic male sterile compared to conventional trait introgression.


Asunto(s)
Haploidia , Zea mays , Zea mays/genética , Zea mays/fisiología , Infertilidad Vegetal/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Centrómero/genética , Histonas/metabolismo , Histonas/genética , Fitomejoramiento/métodos
19.
J Integr Plant Biol ; 66(5): 943-955, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501459

RESUMEN

Maize (Zea mays subspecies mays) is an important commercial crop across the world, and its flowering time is closely related to grain yield, plant cycle and latitude adaptation. FKF1 is an essential clock-regulated blue-light receptor with distinct functions on flowering time in plants, and its function in maize remains unclear. In this study, we identified two FKF1 homologs in the maize genome, named ZmFKF1a and ZmFKF1b, and indicated that ZmFKF1a and ZmFKF1b independently regulate reproductive transition through interacting with ZmCONZ1 and ZmGI1 to increase the transcription levels of ZmCONZ1 and ZCN8. We demonstrated that ZmFKF1b underwent artificial selection during modern breeding in China probably due to its role in geographical adaptation. Furthermore, our data suggested that ZmFKF1bHap_C7 may be an elite allele, which increases the abundance of ZmCONZ1 mRNA more efficiently and adapt to a wider range of temperature zone than that of ZmFKF1bHap_Z58 to promote maize floral transition. It extends our understanding of the genetic diversity of maize flowering. This allele is expected to be introduced into tropical maize germplasm to enrich breeding resources and may improve the adaptability of maize at different climate zones, especially at temperate region.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/fisiología , Adaptación Fisiológica/genética , Reproducción/genética , Reproducción/fisiología , Geografía , Alelos
20.
Sci Total Environ ; 918: 170709, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325451

RESUMEN

Temperature is a vital environmental factor affecting grain filling and maize yield. The response of maize yield to temperature at different stages of grain filling, however, remains uncharacterized. This study used "Zhengdan 958" as the test material to analyze the high-temperature threshold and yield sensitivity of grain-filling in different periods without water stress by using the data from staging sowing experiments at agro-meteorological experimental stations in Hebi and Suzhou in the Huang-Huai-Hai Plain from 2019 to 2022. The results demonstrated that: (1) the maximum temperature threshold was different in various periods of maize grain-filling in the Huang-Huai-Hai Plain, showing the early grain-filling period (EP) > the active grain-filling period (AP) > the late grain-filling period (LP). With the largest differences in temperature thresholds found in AP, the maximum temperature threshold of AP can better reflect the characteristics of grain filling rather than the whole filling period. (2) The heat of the grain-filling period can explain more than 80 % of the yield variation and affect the yield by influencing the number of days required to reach the maximum grain-filling rate (Vmaxd) and the duration of the active grain-filling period (DAP). (3) The growing degree days (GDD) is the most significant controlling factor affecting yield; however, the effect of heat degree days (HDD) cannot be ignored. The HDD and cumulative thresholds of HDD in the EP and AP of grain-filling can better reflect the effect of heat on yield. The accumulation thresholds of HDD at Hebi and Suzhou were 28.1 °C·d and 15.2 °C·d in the EP period, and 31.0 °C·d and 14.9 °C·d in the AP period, respectively. The results provide a basis for the precise identification of heat disasters during grain-filling and the scientific adjustment of sowing dates.


Asunto(s)
Grano Comestible , Zea mays , Temperatura , Zea mays/fisiología , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA