Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(42): e2411620121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378097

RESUMEN

Zeaxanthin (Zea) is a key component in the energy-dependent, rapidly reversible, nonphotochemical quenching process (qE) that regulates photosynthetic light harvesting. Previous transient absorption (TA) studies suggested that Zea can participate in direct quenching via chlorophyll (Chl) to Zea energy transfer. However, the contamination of intrinsic exciton-exciton annihilation (EEA) makes the assignment of TA signal ambiguous. In this study, we present EEA-free TA data using Nicotiana benthamiana thylakoid membranes, including the wild type and three NPQ mutants (npq1, npq4, and lut2) generated by CRISPR/Cas9 mutagenesis. The results show a strong correlation between excitation energy transfer from excited Chl Qy to Zea S1 and the xanthophyll cycle during qE activation. Notably, a Lut S1 signal is absent in the npq1 thylakoids which lack zeaxanthin. Additionally, the fifth-order response analysis shows a reduction in the exciton diffusion length (LD) from 62 ± 6 nm to 43 ± 3 nm under high light illumination, consistent with the reduced range of exciton motion being a key aspect of plants' response to excess light.


Asunto(s)
Clorofila , Transferencia de Energía , Nicotiana , Fotosíntesis , Tilacoides , Zeaxantinas , Zeaxantinas/metabolismo , Clorofila/metabolismo , Nicotiana/metabolismo , Tilacoides/metabolismo , Xantófilas/metabolismo , Mutación
2.
Food Funct ; 15(19): 9995-10006, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39279719

RESUMEN

Lutein (L) and zeaxanthin (Z) are involved in visual function and could prevent age-related macular degeneration and chronic diseases and improve cognitive performances. Adipose tissue is the main storage site for these xanthophylls (Xanth). The factors affecting their concentrations in this tissue remain poorly understood but in animal models, genetic variations in apolipoprotein E and ß-carotene oxygenase 2 have been associated with adipose tissue L concentration. Therefore, the aims of this study were to better characterize the interindividual variability of adipose tissue Xanth concentration and to identify single nucleotide polymorphisms (SNPs) associated with it. Periumbilical subcutaneous adipose tissue samples were collected on 6 occasions in 42 healthy adult males and L and Z concentrations were measured by HPLC. Participants had their whole genome genotyped and the associations of 3589 SNPs in 49 candidate genes with the concentrations of L and Z were measured. Mean L and Z concentrations were 281 ± 27 and 150 ± 14 nmol g-1 proteins, respectively. There was no significant correlation between plasma and adipose tissue Xanth concentrations, although the correlation for L approached significance (Pearson's r = 0.276, p = 0.077). Following univariate filtering, 109 and 97 SNPs were then entered into a partial least squares regression analysis to identify the combination of SNPs that explained best adipose tissue concentration of L and Z, respectively. A combination of 7 SNPs in ELOVL5, PPARG, ISX and ABCA1, explained 58% of the variability in adipose tissue L concentration while 11 SNPs located in or near PPARG, ABCA1, ELOVL5, CXCL8, IRS1, ISX, MC4R explained 53% of the variance in adipose tissue Z concentration. This suggests that some genetic variations influence the concentrations of these Xanth in adipose tissue and could therefore indirectly influence the health effects of these compounds. Clinical Trial Registry: https://ClinicalTrials.gov registration number NCT02100774.


Asunto(s)
Tejido Adiposo , Luteína , Polimorfismo de Nucleótido Simple , Zeaxantinas , Humanos , Masculino , Zeaxantinas/metabolismo , Adulto , Luteína/metabolismo , Tejido Adiposo/metabolismo , Persona de Mediana Edad , Adulto Joven , Genotipo
3.
Invest Ophthalmol Vis Sci ; 65(8): 23, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007849

RESUMEN

Purpose: This study aims to investigate the potential in vivo relationship between macular pigment (MP) and retinal layers thickness in healthy subjects and dry, non-advanced age-related macular degeneration (AMD). Methods: An observational, cross-sectional study was conducted. Healthy subjects >40 years and patients with early or intermediate AMD were recruited. Structural OCT and macular pigment optical volume (MPOV) were collected for each subject. Retinal layers parameters were calculated based on the standard early treatment diabetic retinopathy study (ETDRS) map. Additionally, MPOV within 1°, 2°, and 9° of eccentricity was assessed and associated with retinal layers thickness and volume. Linear mixed-effects models were used to test the relationship between MP and structural OCT parameters, while adjusting for known possible confounding factors. Results: A total of 144 eyes of 91 subjects (60.4% females) were evaluated, comprising 43% normal eyes and 57% with early/intermediate AMD. Among the retinal layers, only the outer nuclear layer (ONL) thickness and volume appeared to be associated to higher MP levels. Specifically, the central ONL thickness was identified as a significant predictor of the MPOV 1°(P = 0.04), while the parafoveal ONL thickness (inner ETDRS subfield) was identified as a significant fixed effect on the MPOV 9° (P = 0.037). Age and the presence of drusen or subretinal drusenoid deposits were also tested without showing significant correlations. Conclusions: Among the retinal layers examined, only the ONL thickness demonstrated a significant association with MPOV. Consequently, ONL thickness might serve as a potential biomarker related to MP levels.


Asunto(s)
Pigmento Macular , Tomografía de Coherencia Óptica , Humanos , Femenino , Estudios Transversales , Masculino , Tomografía de Coherencia Óptica/métodos , Pigmento Macular/metabolismo , Anciano , Persona de Mediana Edad , Adulto , Zeaxantinas/metabolismo , Retina/diagnóstico por imagen , Retina/metabolismo , Retina/patología , Agudeza Visual/fisiología , Degeneración Macular/metabolismo , Degeneración Macular/diagnóstico , Voluntarios Sanos , Luteína/metabolismo , Anciano de 80 o más Años
4.
Semin Ophthalmol ; 39(8): 577-585, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38717910

RESUMEN

PURPOSE: This systematic review studies the relationship between Macular Pigment Optical Density (MPOD) values and cognitive and visual function in childhood. METHODS: It included cross-sectional, observational studies or controlled clinical trials in humans between 0 and 18 years of age, analyzing MPOD values in 3 main databases: PubMed, Scopus and Web of Science. The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations. RESULTS: Thirteen studies were included in this systematic review. The relationship of cognitive function, visual function and diverse variables with MPOD was analyzed in 4, 4 and 5 studies, respectively. The age of the participants ranged between premature infants to 12 years. Most of the studies used Heterochromatic Flicker Photometry (HFP) with macular densitometer to obtain MPOD values. MPOD values ranged between 0 (undetectable) to 0.66 ± 0.03 d.u. Only 4 articles studied the relationship between MPOD values and dietary intake of lutein and zeaxanthin using questionnaires about diet. CONCLUSIONS: Lutein and zeaxanthin accumulation plays an important role during the maturational stage and childhood development. Although cognitive function is more strongly correlated with MPOD values, the relationship with visual function remains unclear, and further studies are required to support this relationship.


Asunto(s)
Pigmento Macular , Humanos , Pigmento Macular/metabolismo , Niño , Preescolar , Agudeza Visual/fisiología , Lactante , Luteína/metabolismo , Zeaxantinas/metabolismo , Mácula Lútea/metabolismo , Cognición/fisiología , Adolescente , Recién Nacido
5.
Physiol Plant ; 176(3): e14327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716559

RESUMEN

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Asunto(s)
Antocianinas , Clorofila , Hojas de la Planta , Estaciones del Año , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/fisiología , Antocianinas/metabolismo , Clorofila/metabolismo , Senescencia de la Planta , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Luz , Proteínas de Plantas/metabolismo , Xantófilas/metabolismo
6.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722384

RESUMEN

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Asunto(s)
Luteína , Xantófilas , Zeaxantinas , Luteína/biosíntesis , Luteína/metabolismo , Zeaxantinas/metabolismo , Xantófilas/metabolismo , Ingeniería Metabólica/métodos , Carotenoides/metabolismo , Bacterias/metabolismo , Humanos , Vías Biosintéticas
7.
Bioresour Technol ; 401: 130714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641299

RESUMEN

This study established and investigated continuous macular pigment (MP) production with a lutein (L):zeaxanthin (Z) ratio of 4-5:1 by an MP-rich Chlorella sp. CN6 mutant strain in a continuous microalgal culture module. Chlorella sp. CN6 was cultured in a four-stage module for 10 days. The microalgal culture volume increased to 200 L in the first stage (6 days). Biomass productivity increased to 0.931 g/L/day with continuous indoor white light irradiation during the second stage (3 days). MP content effectively increased to 8.29 mg/g upon continuous, indoor white light and blue light-emitting diode irradiation in the third stage (1 day), and the microalgal biomass and MP concentrations were 8.88 g/L and 73.6 mg/L in the fourth stage, respectively. Using a two-step MP extraction process, 80 % of the MP was recovered with a high purity of 93 %, and its L:Z ratio was 4-5:1.


Asunto(s)
Biomasa , Chlorella , Pigmento Macular , Microalgas , Microalgas/metabolismo , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Pigmento Macular/metabolismo , Luteína/metabolismo , Luz , Técnicas de Cultivo de Célula/métodos , Zeaxantinas/metabolismo , Xantófilas/metabolismo
8.
J Agric Food Chem ; 72(18): 10459-10468, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38666490

RESUMEN

Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Vitis , Xantófilas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Xantófilas/metabolismo , Vitis/metabolismo , Vitis/microbiología , Vitis/química , Oxidación-Reducción , Zeaxantinas/metabolismo , Zeaxantinas/biosíntesis , NADP/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética
9.
J Am Nutr Assoc ; 43(6): 505-518, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38393321

RESUMEN

Ocular health has emerged as one of the major issues of global health concern with a decline in quality of life in an aging population, in particular and rise in the number of associated morbidities and mortalities. One of the chief reasons for vision impairment is oxidative damage inflicted to photoreceptors in rods and cone cells by blue light as well as UV radiation. The scenario has been aggravated by unprecedented rise in screen-time during the COVID and post-COVID era. Lutein and Zeaxanthin are oxygenated carotenoids with proven roles in augmentation of ocular health largely by virtue of their antioxidant properties and protective effects against photobleaching of retinal pigments, age-linked macular degeneration, cataract, and retinitis pigmentosa. These molecules are characterized by their characteristic yellow-orange colored pigmentation and are found in significant amounts in vegetables such as corn, spinach, broccoli, carrots as well as fish and eggs. Unique structural signatures including tetraterpenoid skeleton with extensive conjugation and the presence of hydroxyl groups at the end rings have made these molecules evolutionarily adapted to localize in the membrane of the photoreceptor cells and prevent their free radical induced peroxidation. Apart from the benefits imparted to ocular health, lutein and zeaxanthin are also known to improve cognitive function, cardiovascular physiology, and arrest the development of malignancy. Although abundant in many natural sources, bioavailability of these compounds is low owing to their long aliphatic backbones. Under the circumstances, there has been a concerted effort to develop vegetable oil-based carriers such as lipid nano-emulsions for therapeutic administration of carotenoids. This review presents a comprehensive update of the therapeutic potential of the carotenoids along with the challenges in achieving an optimized delivery tool for maximizing their effectiveness inside the body.


Lutein and zeaxanthin are the two most abundant natural xanthophylls (oxygenated carotenoids) with a linear C40 tetraterpene/isoprenoid lycopene-based backbone.Presence of extensive conjugation (more than 10 double bonds) enable these molecules to act as accessory light harvesting pigments apart from chlorophyll.More importantly, the xanthophylls prevent photobleaching of the pigments and proteins in the Light Harvesting Complex (LHC) by sequestering the excess unutilized blue light and preventing triplet chlorophyll associated formation of Reactive Oxygen Species.In human eye, lutein, zeaxanthin along with mesozeaxanthin constitute the three macular pigments forming the so called "yellow spot" of the macula and are implicated in maintaining the redox balance, homeostasis and normal physiology of the eyes.However, unlike plants, xanthophylls must be acquired from dietary sources such as colored leafy vegetables and egg yolk.Increase in the number of eye diseases in the aging population coupled with insufficient bioavailability of xanthophylls has mandated the industrial production of supplements enriched in xanthophylls.The bioavailability and delivery of xanthophylls can be significantly enhanced by suspension in a blend of extra-virgin olive oil and other vegetable oils.


Asunto(s)
Luteína , Zeaxantinas , Humanos , Zeaxantinas/metabolismo , Luteína/farmacología , Luteína/metabolismo , COVID-19/prevención & control , Antioxidantes/farmacología , Degeneración Macular/metabolismo , Degeneración Macular/prevención & control , Pigmento Macular/metabolismo
10.
Plant J ; 118(2): 469-487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180307

RESUMEN

Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F3 population derived from a cross of EMS204 and Yuwolcho, and the locus was mapped to a 2.5-Mbp region on chromosome 2. Among the genes in the region, a missense mutation was found in ZEP (zeaxanthin epoxidase) that results in an amino acid sequence alteration (V291 → I). A color complementation experiment with Escherichia coli and ZEP in vitro assay using thylakoid membranes revealed decreased enzymatic activity of EMS204 ZEP. Analysis of endogenous plant hormones revealed a significant reduction in abscisic acid content in EMS204. Germination assays and salinity stress experiments corroborated the lower ABA levels in the seeds. Virus-induced gene silencing showed that ZEP silencing also results in bright-red fruit containing less capsanthin but more zeaxanthin than control. A germplasm survey of red color accessions revealed no similar carotenoid profiles to EMS204. However, a breeding line containing a ZEP mutation showed a very similar carotenoid profile to EMS204. Our results provide a novel breeding strategy to develop red pepper cultivars containing high zeaxanthin contents using ZEP mutations.


Asunto(s)
Capsicum , Oxidorreductasas , Capsicum/genética , Capsicum/metabolismo , Zeaxantinas/metabolismo , Frutas/metabolismo , Mutación con Pérdida de Función , Fitomejoramiento , Carotenoides/metabolismo , Xantófilas
11.
Food Res Int ; 177: 113909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225147

RESUMEN

Carotenoids in maize grain degrade during storage, but the relationship between their stability and the physicochemical properties of the grain is unclear. Therefore, the carotenoid degradation rate in milled grain of three dent hybrids differing in grain hardness was evaluated at various temperatures (-20, 4 and 22 °C). The carotenoid degradation rate was calculated using first-order kinetics based on the content in the samples after 7, 14, 21, 28, 42, 56, 70 and 90 days of storage and related to the physicochemical properties of the grain. The highest grain hardness was found in the hybrid with the highest zein and endosperm lipid concentration, while the lowest grain hardness was found in the hybrid with the highest amylose content and the specific surface area of starch granule (SSA). As expected, carotenoids in milled maize grain were most stable at -20 °C, followed by storage at 4 and 22 °C. Tested hybrids differed in the degradation rate of zeaxanthin, α-cryptoxanthin and ß-carotene, and these responses were also temperature-dependent. In contrast, all hybrids showed similar degradation rate for lutein and ß-cryptoxanthin regardless of the storage temperature. Averaged over the hybrids, the degradation rate for individual carotenoids ranked as follows: lutein < zeaxanthin < α-cryptoxanthin < ß-cryptoxanthin < ß-carotene. The lower degradation rate for most carotenoids was mainly associated with a higher content of zein and specific endosperm lipids, with the exception of zeaxanthin, which showed an opposite pattern of response. Degradation rate for lutein and zeaxanthin negatively correlated with SSA, but interestingly, small starch granules were positively associated with higher degradation rate for mostcarotenoids. Dent-type hybrids may differ significantly in carotenoid degradation rate, which was associated with specific physicochemical properties of the maize grain.


Asunto(s)
Criptoxantinas , Luteína , Zeína , Luteína/análisis , beta Caroteno/química , Zea mays/química , Zeaxantinas/metabolismo , beta-Criptoxantina , Carotenoides/análisis , Grano Comestible/química , Almidón
12.
Microb Biotechnol ; 17(1): e14312, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37435812

RESUMEN

Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.


Asunto(s)
Productos Biológicos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Prodigiosina/metabolismo , Productos Biológicos/metabolismo , Biotecnología , Zeaxantinas/metabolismo
13.
Plant Physiol Biochem ; 206: 108232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091932

RESUMEN

Carotenoids and their derivates play critical physiologic roles in plants. However, these substrates and their metabolism have not been elucidated in fruit of blueberry (Vaccinium corymbosum). In this study, carotenoids and ABA were investigated by LC-MS and their biosynthesis were subject to proteomic analysis during fruit ripening. Activity of CCD1 and NCED1/3 were studied in vivo or in vitro. Also, effects of ethephon and 1-MCP on biosynthesis of carotenoid and ABA were investigated through the expression of corresponding genes using qPCR. As a result, carotenoid biosynthesis was prominently mitigated whereas its metabolism was enhanced during fruit ripening, which resulted in a decrease in the carotenoids. VcCCD1 could both cleave ß-carotene, zeaxanthin and lutein at positions of 9, 10 (9', 10'), which was mainly responsible for the degradation of these carotenoids. Interestingly, in the situation of mitigation of carotenoid biosynthesis, ABA still rapidly accumulated, which was mainly attributed to the upregulated expression of VcNCED1/3. Notably, VcNCED1/3 also showed a cleavage activity of all-trans-zeaxanthin and a stereospecific cleavage activity of 9-cis-carotene to generate C15-carotenal. The C15-carotenal could be potentially converted to ABA through ZEP-independent ABA biosynthetic pathway during blueberry fruit ripening. Similar to a nature natural maturation, ethylene accelerated the carotenoid degradation and ABA biosynthesis trough downregulating the expression of genes in carotenoid biosynthesis and upregulating the expression of genes in ABA biosynthesis. These information help understand the regulation of carotenoids and ABA, and effects of ethylene on the regulation during blueberry fruit ripening.


Asunto(s)
Arándanos Azules (Planta) , Arándanos Azules (Planta)/genética , Arándanos Azules (Planta)/metabolismo , Frutas/metabolismo , Proteómica , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
J Sci Food Agric ; 104(5): 3147-3155, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38072645

RESUMEN

BACKGROUND: Carotenoids play key roles in photosynthesis and are widely used in foods as natural pigments, antioxidants, and health-promoting compounds. Enhancing carotenoid production in microalgae via biotechnology has become an important area of research. RESULTS: We knocked out the Na+ /Ca2+ antiporter gene slr0681 in Synechocystis sp. PCC 6803 via homologous recombination and evaluated the effects on carotenoid production under normal (NL) and high-light (HL) conditions. On day 7 of NL treatment in calcium ion (Ca2+ )-free medium, the cell density of Δslr0681 decreased by 29% compared to the wild type (WT). After 8 days of HL treatment, the total carotenoid contents decreased by 35% in Δslr0681, and the contents of individual carotenoids were altered: myxoxanthophyll, echinenone, and ß-carotene contents increased by 10%, 50%, and 40%, respectively, while zeaxanthin contents decreased by ~40% in Δslr0681 versus the WT. The expression patterns of carotenoid metabolic pathway genes also differed: ipi expression increased by 1.2- to 8.5-fold, whereas crtO and crtR expression decreased by ~90% and 60%, respectively, in ∆slr0681 versus the WT. In addition, in ∆slr0681, the expression level of psaB (encoding a photosystem I structural protein) doubled, whereas the expression levels of the photosystem II genes psbA2 and psbD decreased by ~53% and 84%, respectively, compared to the WT. CONCLUSION: These findings suggest that slr0681 plays important roles in regulating carotenoid biosynthesis and structuring of the photosystems in Synechocystis sp. This study provides a theoretical basis for the genetic engineering of microalgae photosystems to increase their economic benefits and lays the foundation for developing microalgae germplasm resources with high carotenoid contents. © 2023 Society of Chemical Industry.


Asunto(s)
Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Zeaxantinas/metabolismo
15.
J Clin Lipidol ; 18(1): e105-e115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37989694

RESUMEN

BACKGROUND: Familial hypobetalipoproteinemias (FHBL) are rare genetic diseases characterized by lipid malabsorption. We focused on abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3), caused by mutations in microsomal triglyceride transfer protein (MTTP) and SAR1B genes, respectively. Treatments include a low-fat diet and high-dose fat-soluble vitamin supplementations. However, patients are not supplemented in carotenoids, a group of lipid-soluble pigments essential for eye health. OBJECTIVE: Our aim was to evaluate carotenoid absorption and status in the context of hypobetalipoproteinemia. METHODS: We first used knock-out Caco-2/TC7 cell models of FHBL-SD1 and FHBL-SD3 to evaluate carotenoid absorption. We then characterized FHBL-SD1 and FHBL-SD3 patient status in the main dietary carotenoids and compared it to that of control subjects. RESULTS: In vitro results showed a significant decrease in basolateral secretion of α- and ß-carotene, lutein, and zeaxanthin (-88.8 ± 2.2 % to -95.3 ± 5.8 %, -79.2 ± 4.4 % to -96.1 ± 2.6 %, -91.0 ± 4.5 % to -96.7 ± 0.3 % and -65.4 ± 3.6 % to -96.6 ± 1.9 %, respectively). Carotenoids plasma levels in patients confirmed significant deficiencies, with decreases ranging from -89 % for zeaxanthin to -98 % for α-carotene, compared to control subjects. CONCLUSION: Given the continuous loss in visual function despite fat-soluble vitamin treatment in some patients, carotenoid supplementation may be of clinical utility. Future studies should assess the correlation between carotenoid status and visual function in aging patients and investigate whether carotenoid supplementation could prevent their visual impairment.


Asunto(s)
Hipobetalipoproteinemias , Proteínas de Unión al GTP Monoméricas , Sindactilia , Humanos , Células CACO-2 , Zeaxantinas/metabolismo , Hipobetalipoproteinemias/genética , Carotenoides/metabolismo , Vitaminas , Lípidos , Proteínas de Unión al GTP Monoméricas/genética
16.
Poult Sci ; 103(2): 103286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38100949

RESUMEN

In this study, we evaluated the enrichment efficiency of lutein in eggs and its function in preventing fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Five groups of laying hens (65 wk old) were fed basal diets supplemented with 0, 30, 60, 90, or 120 mg/kg of lutein. The supplementation period lasted 12 wk followed by 2 wk of lutein depletion in feed. The results revealed that lutein efficiently enriched the egg yolks and improved their color with a significant increase in relative redness (P < 0.001). Lutein accumulation increased in the egg yolk until day 10, then depletion reached a minimum level after 14 d. Overall, zeaxanthin content in all the groups was similar throughout the experimental period. However, triglycerides and total cholesterol were significantly decreased in the liver (P < 0.05) but not significantly different in the serum (P > 0.05). In the serum, the lipid metabolism enzyme acetyl-CoA synthetase was significantly reduced (P < 0.05), whereas dipeptidyl-peptidase 4 was not significantly different (P > 0.05), and there was no statistical difference of either enzyme in the liver (P > 0.05). Regarding oxidation and inflammation-related indexes, malondialdehyde, tumor necrosis factors alpha, interleukin-6, and interleukin-1 beta were decreased, whereas superoxide dismutase and total antioxidant capacity increased in the liver (P < 0.001). The function of lutein for the same indexes in serum was limited. It was concluded that lutein efficiently enriched the egg yolk of old laying hens to improve their color and reached the highest level on day 10 without being subject to a significant conversion into zeaxanthin. At the same time, lutein prevented liver steatosis in aged laying hens by exerting strong antioxidant and anti-inflammatory functions, but also through the modulation of lipid metabolism, which may contribute to reducing the incidence of FLHS in poultry.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Hígado Graso , Trastornos del Crecimiento , Defectos del Tabique Interventricular , Luteína , Femenino , Animales , Luteína/metabolismo , Antioxidantes/metabolismo , Pollos/metabolismo , Zeaxantinas/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria , Yema de Huevo/metabolismo , Hígado Graso/prevención & control , Hígado Graso/veterinaria , Alimentación Animal/análisis
17.
Physiol Plant ; 175(6): e14102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148246

RESUMEN

Drought hampers global rice production. Abscisic acid (ABA) plays versatile roles under different environmental stresses. While the link between drought and ABA is known, its effect on ABA biosynthesis genes and metabolites is unclear. This study explored the impact of drought on various metabolites, namely beta-carotene, zeaxanthin, antheraxanthin, violaxanthin, neoxanthin, and candidate genes viz. zeaxanthin epoxidase (ZEP) and 9-cis epoxycarotenoid dioxygenase (NCED) of ABA biosynthesis pathway in rice cultivars (N22 and IR64) at anthesis {65 DAT (Days after transplanting)} with different stress levels. In stressed plants, zeaxanthin significantly increased (92%), while the concentration of beta-carotene, antheraxanthin, violaxanthin and neoxanthin decreased as drought stress progressed. The concentration of metabolites in roots was notably lower than in leaves in both genotypes. The ZEP expression was upregulated in roots (8.24-fold) under drought stress. Among five NCED isoforms, NCED3 showed significant upregulation (7.29-fold) in leaf and root tissue. NCED1 was significantly downregulated as stress progressed and was negatively correlated with ABA accumulation. NCED2, NCED4 and NCED5 showed no significant change in their expression. Drying and rolling of rice leaves was observed after imparting drought stress. The findings revealed that drought stress significantly influenced the expression of candidate genes and the concentration of metabolites of the ABA biosynthesis pathway. There was a significantly higher accumulation of ABA in N22 leaves (47%) and roots (30%) compared to IR64. The N22, a drought-tolerant genotype, exhibited significantly higher concentrations of intermediates and demonstrated increased expression of ZEP and NCED3, potentially contributing to its resilience against drought.


Asunto(s)
Ácido Abscísico , Oryza , Ácido Abscísico/metabolismo , Oryza/genética , Oryza/metabolismo , beta Caroteno/metabolismo , Zeaxantinas/metabolismo , Sequías , Vías Biosintéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
18.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894770

RESUMEN

Crocins are important natural products predominantly obtained from the stigma of saffron, and that can be utilized as a medicinal compound, spice, and colorant with significant promise in the pharmaceutical, food, and cosmetic industries. Carotenoid cleavage dioxygenase 2 (CsCCD2) is a crucial limiting enzyme that has been reported to be responsible for the cleavage of zeaxanthin in the crocin biosynthetic pathway. However, the catalytic activity of CsCCD2 on ß-carotene/lycopene remains elusive, and the soluble expression of CsCCD2 remains a big challenge. In this study, we reported the functional characteristics of CsCCD2, that can catalyze not only zeaxanthin cleavage but also ß-carotene and lycopene cleavage. The molecular basis of the divergent functionality of CsCCD2 was elucidated using bioinformatic analysis and truncation studies. The protein expression optimization results demonstrated that the use of a maltose-binding protein (MBP) tag and the optimization of the induction conditions resulted in the production of more soluble protein. Correspondingly, the catalytic efficiency of soluble CsCCD2 was higher than that of the insoluble one, and the results further validated its functional verification. This study not only broadened the substrate profile of CsCCD2, but also achieved the soluble expression of CsCCD2. It provides a firm platform for CsCCD2 crystal structure resolution and facilitates the synthesis of crocetin and crocins.


Asunto(s)
Crocus , Crocus/química , beta Caroteno/metabolismo , Licopeno/metabolismo , Zeaxantinas/metabolismo , Vitamina A/metabolismo
19.
Physiol Plant ; 175(5): e13998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882279

RESUMEN

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.


Asunto(s)
Arabidopsis , Luz , Oxidorreductasas/metabolismo , Xantófilas/metabolismo , Zeaxantinas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Luteína/metabolismo , Arabidopsis/metabolismo , Aclimatación , Clorofila/metabolismo , Fotosíntesis
20.
Plant Cell Physiol ; 64(10): 1220-1230, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37556318

RESUMEN

The generation of violaxanthin (Vx) de-epoxidase (VDE), photosystem II subunit S (PsbS) and zeaxanthin (Zx) epoxidase (ZEP) (VPZ) lines, which simultaneously overexpress VDE, PsbS and ZEP, has been successfully used to accelerate the kinetics of the induction and relaxation of non-photochemical quenching (NPQ). Here, we studied the impact of the overexpression of VDE and ZEP on the conversion of the xanthophyll cycle pigments in VPZ lines of Arabidopsis thaliana and Nicotiana tabacum. The protein amount of both VDE and ZEP was determined to be increased to about 3- to 5-fold levels of wild-type (WT) plants for both species. Compared to WT plants, the conversion of Vx to Zx, and hence VDE activity, was only marginally accelerated in VPZ lines, whereas the conversion of Zx to Vx, and thus ZEP activity, was strongly increased in VPZ lines. This indicates that the amount of ZEP but not the amount of VDE is a critical determinant of the equilibrium of the de-epoxidation state of xanthophyll cycle pigments under saturating light conditions. Comparing the two steps of epoxidation, particularly the second step (antheraxanthin to Vx) was found to be accelerated in VPZ lines, implying that the intermediate Ax is released into the membrane during epoxidation by ZEP.


Asunto(s)
Arabidopsis , Zeaxantinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Xantófilas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA