Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Zhen Ci Yan Jiu ; 49(8): 829-835, 2024 Aug 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39318312

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) on pain, anxiety like behavior, and substance P(SP) /neurokinin-1 receptor (NK1R) /ß -arrestin 1(ARRB1) pathway related protein expression in hippocampus of chronic constriction injury (CCI) rats, so as to explore its mechanisms underlying improvement of neuropathic pain. METHODS: Twenty-seven male SD rats were randomly divided into sham operation, model and EA groups, with 9 rats in each group. The CCI model was established by ligature of the left sciatic nerve. On the 8th day following modeling, EA (2 Hz, 0.5-1.5 mA) was applied to the left "Huantiao" (GB34) and "Yanglingquan" (GB34) for 30 min, once every other day for 13 times. Mechanical paw withdrawal threshold (MWT), thermal paw withdrawal threshold (TWL) and difference of the weight distribution of the hind limbs were detected before operation and at the 5th, 9th, 17th, 25th and 33rd days after operation. Open field test was used to evaluate the anxiety-like behavior of rats. The content of SP in hippocampus was determined by ELISA. The protein expression of NK1R and ARRB1 in hippocampus was detected by Western blot. RESULTS: Compared with the sham operation group, the MWT and TWL of the left hind limb at the 5th, 9th, 17th, 25th and 33rd days after operation, the time of entering the central area and the total distance of movement, and the content of SP in the hippocampus were significantly decreased (P<0.001, P<0.01), while the difference of the weight distribution of the hind limbs at the 5th, 9th, 17th, 25th and 33rd days after operation and the protein expression of NK1R and ARRB1 were significantly increased (P<0.001, P<0.05) in the model group. After EA intervention, the MWT and TWL of the left hind limb, the time of entering the central area and the total moving distance, and the expression of SP in the hippocampus were significantly increased (P<0.01, P<0.001, P<0.05), while the difference in the weight distribution of the hind limbs was significantly reduced, and the expression of NK1R and ARRB1 protein in the hippocampus were significantly decreased (P<0.001, P<0.05) in the EA group. CONCLUSIONS: EA can effectively improve the pain and anxiety behaviors in CCI rats, and reverse the abnormal expression of SP, NK1R and ARRB1 proteins in the hippocampus, which may be related to its effects in regulating the SP/NK1R/ARRB1 pathway in the hippocampus.


Asunto(s)
Electroacupuntura , Hipocampo , Neuralgia , Ratas Sprague-Dawley , Receptores de Neuroquinina-1 , Sustancia P , Animales , Masculino , Ratas , Hipocampo/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Neuralgia/genética , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-1/genética , Humanos , Sustancia P/metabolismo , Sustancia P/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Puntos de Acupuntura , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 121(30): e2404000121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008676

RESUMEN

Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon ß-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of ß-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Receptores CXCR , Humanos , Receptores CXCR/metabolismo , Receptores CXCR/genética , Sitios de Unión , Conformación Proteica , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Ligandos , Células HEK293 , Mutagénesis Sitio-Dirigida , Regulación Alostérica , Relación Estructura-Actividad
3.
Circ Res ; 135(6): 651-667, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082138

RESUMEN

BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Isoproterenol , Miocitos Cardíacos , beta-Arrestina 1 , Animales , Fosforilación , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Isoproterenol/toxicidad , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Masculino , Receptores Adrenérgicos beta/metabolismo , Serina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Agonistas Adrenérgicos beta/farmacología , Agonistas Adrenérgicos beta/toxicidad , Células Cultivadas , Transducción de Señal , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Humanos
4.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119769, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38838859

RESUMEN

OBJECTIVE: Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain (LBP). ß-arrestin 1 (ARRB1) is a multifunctional protein that regulates numerous pathological processes. The aim of this study was to investigate the role of ARRB1 in IVDD. METHODS: The expression of ARRB1 in nucleus pulposus (NP) of rats with IVDD was assayed. Next, rat nucleus pulposus cells (NPCs) were infected with lentiviruses containing shArrb1 (LV-shArrb1) and overexpressing Arrb1 (LV-oeArrb1). The roles of Arrb1 in serum-deprived NPCs were investigated by measuring apoptosis, extracellular matrix degradation, and autophagic flux. For experiments in vivo, LV-oeArrb1 lentivirus was injected into the NP tissues of IVDD rats to evaluate the effects of Arrb1 overexpression on NP. RESULTS: In the NP tissues of IVDD rats, ARRB1 and cleaved caspase-3 expression increased, and the ratio of LC3II/LC3I protein expression was upregulated. Arrb1 knockdown aggravated extracellular matrix degradation, cellular apoptosis, and impairment of autophagic flux in rat NPCs under serum-deprived conditions, whereas Arrb1 overexpression significantly reversed these effects. ARRB1 interacted with Beclin 1, and Arrb1 knockdown suppressed the formation of the Beclin1-PIK3C3 core complex. The autophagy inhibitor 3-methyladenine (3-MA) offset the protective effects of Arrb1 overexpression in serum-deprived NPCs. Furthermore, Arrb1 overexpression inhibited apoptosis and extracellular matrix degradation, promoted autophagy in NP, and delayed the development of IVDD in rats. CONCLUSION: ARRB1 prevents extracellular matrix degradation and apoptosis of NPCs by upregulating autophagy and ameliorating IVDD progression, presenting an innovative strategy for the treatment of IVDD.


Asunto(s)
Apoptosis , Autofagia , Matriz Extracelular , Degeneración del Disco Intervertebral , Núcleo Pulposo , beta-Arrestina 1 , Animales , Masculino , Ratas , Apoptosis/genética , Autofagia/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Ratas Sprague-Dawley
5.
Cell Death Dis ; 15(5): 358, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777849

RESUMEN

Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of ß-arrestin1 (ß-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/ß-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin ß1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or ß-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/ß-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Ováricas , Podosomas , beta-Arrestina 1 , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Podosomas/metabolismo , Endotelina-1/metabolismo , Metástasis de la Neoplasia , Receptor de Endotelina A/metabolismo , Transducción de Señal , Matriz Extracelular/metabolismo , Movimiento Celular , Proliferación Celular , Animales , Fibroblastos/metabolismo , Invasividad Neoplásica
6.
Int Immunopharmacol ; 130: 111676, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38367465

RESUMEN

ß-arrestin-1 has been demonstrated to participate in the regulation of inflammatory reactions in several diseases. Thus, this study aimed to investigate the role of macrophage ß-arrestin-1 in the pathogenesis and progression of ulcerative colitis (UC). A myeloid ß-arrestin-1 conditional knockout mouse model was generated to explore the role of macrophage ß-arrestin-1. DSS was employed for the establishment of an ulcerative colitis mouse model, using TNF-α as an inflammatory stressor in vitro. The expression level of ß-arrestin-1 was detected via western blot and immunofluorescence assays, whilst disease severity was evaluated by clinical score and H&E staining in the DSS-induced colitis model. In the in vitro experiments, the levels of inflammatory cytokines were examined using real-time PCR. NF-κB activation was detected through the double luciferase reporter system, western blot, and electrophoretic mobility shift assay (EMSA). BAY11-7082 was used to inhibit NF-κB activation. Our results exposed that the level of ß-arrestin-1 was increased in monocytes/macrophages derived from DSS-induced colitis mice or under the TNF-α challenge. Moreover, conditionally knocking out the expression of myeloid ß-arrestin-1 alleviated disease severity, while knocking out the expression of ß-arrestin-1 decreased the levels of inflammatory cytokines. Additionally, NF-κB was identified as a central regulatory element of ß-arrestin-1 promoter, and using BAY11-7082 to inhibit NF-κB activation lowered the level of ß-arrestin-1 under TNF-α challenge. ß-arrestin-1 led to the activation of the NF-κB signaling pathway by enhancing binding to IκBα and IKK under the TNF-α challenge. Taken together, our findings demonstrated macrophage ß-arrestin-1 contributes to the deterioration of DSS-induced colitis through the interaction with NF-κB signaling, thus highlighting a novel target for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Nitrilos , Sulfonas , Animales , Ratones , FN-kappa B/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/uso terapéutico , Transducción de Señal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas/metabolismo , Macrófagos/metabolismo , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
Cell Biol Toxicol ; 40(1): 1, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252352

RESUMEN

Acetaminophen (APAP) stands as the predominant contributor to drug-induced liver injury (DILI), and limited options are available. ß-Arrestin1 (ARRB1) is involved in numerous liver diseases. However, the role of ARRB1 in APAP-induced liver injury remained uncertain. Wild-type (WT) and ARRB1 knockout (KO) mice were injected with APAP and sacrificed at the indicated times. The histological changes, inflammation, endoplasmic reticulum (ER) stress, and apoptosis were then evaluated. Hepatic cell lines AML-12 and primary hepatocytes were used for in vitro analyses. Systemic ARRB1-KO mice were susceptible to APAP-induced hepatotoxicity, as indicated by larger areas of centrilobular necrosis area and higher levels of ALT, AST, and inflammation level. Moreover, ARRB1-KO mice exhibited increased ER stress (indicated by phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α)-activating transcription factor 4 (ATF4)-CCAAT-enhancer-binding protein homologous protein (CHOP)) and apoptosis (indicated by cleaved caspase 3). Further rescue experiments demonstrated that the induction of apoptosis was partially mediated by ER stress. Overexpression of ARRB1 alleviated APAP-induced ER stress and apoptosis. Moreover, co-IP analysis revealed that ARRB1 directly bound to p-eIF2α and eIF2α. ARRB1 protected against APAP-induced hepatoxicity through targeting ER stress and apoptosis. ARRB1 is a prospective target for treating APAP-induced DILI.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Estrés del Retículo Endoplásmico , beta-Arrestina 1 , Animales , Ratones , Acetaminofén/toxicidad , Factor de Transcripción Activador 4 , Apoptosis , Inflamación , Ratones Noqueados , Necrosis , beta-Arrestina 1/genética , Factor 2 Eucariótico de Iniciación
8.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38152023

RESUMEN

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Asunto(s)
Hipertensión , MicroARNs , Animales , Ratas , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Presión Sanguínea/fisiología , Luciferasas/metabolismo , Bulbo Raquídeo/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY
9.
Nat Commun ; 14(1): 7865, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030602

RESUMEN

ß-Arrestins (ßarrs) are functionally versatile proteins that play critical roles in the G-protein-coupled receptor (GPCR) signaling pathways. While it is well established that the phosphorylated receptor tail plays a central role in ßarr activation, emerging evidence highlights the contribution from membrane lipids. However, detailed molecular mechanisms of ßarr activation by different binding partners remain elusive. In this work, we present a comprehensive study of the structural changes in critical regions of ßarr1 during activation using 19F NMR spectroscopy. We show that phosphopeptides derived from different classes of GPCRs display different ßarr1 activation abilities, whereas binding of the membrane phosphoinositide PIP2 stabilizes a distinct partially activated conformational state. Our results further unveil a sparsely-populated activation intermediate as well as complex cross-talks between different binding partners, implying a highly multifaceted conformational energy landscape of ßarr1 that can be intricately modulated during signaling.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo , Fosforilación
10.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844230

RESUMEN

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Asunto(s)
Arrestinas , Transducción de Señal , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulación Alostérica , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Fosforilación , Arrestina beta 2/metabolismo
11.
Int Immunopharmacol ; 125(Pt A): 111085, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866313

RESUMEN

Autophagy in atherosclerotic plaque macrophage contributes to the alleviation of atherosclerosis through the promotion of lipid metabolism. ß-arrestins are multifunctional proteins participating various kinds of cellular signaling pathways. Here we aimed to determine the role of ß-arrestin-1, an important member of ß-arrestin family, in atherosclerosis, and whether autophagy was involved in this process. ApoE-/-ß-arrestin-1fl/flLysM-Cre mice were created through bone marrow transplantation for the atherosclerosis model with conditional myeloid knocking out ß-arrestin-1. Bone marrow-derived macrophages (BMDMs) were used for the in vitro studies. Oil red O staining was used to detect the lesional area. F4/80, Masson trichrome and picro-Sirius red staining were applied for the determination of plaque stability. Real-time PCR was used for the detection of levels of lipid metabolism-related receptors. Electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy level. We found that ß-arrestin-1 was highly increased in expression in plaque macrophage on the occurrence of atherosclerosis. Conditional myeloid knocking out ß-arrestin-1 largely promotes plaque formation and vulnerability. In murine macrophage with lipid loading, knocking down ß-arrestin-1 enhanced foam cell formation and levels of plasma and cellular cholesterol, while overexpressing ß-arrestin-1 led to the opposite effects. The alleviative effects induced by macrophage ß-arrestin-1 in atherosclerosis were involved in autophagy, based on the reduction of autophagy level with the knocking down of macrophage ß-arrestin-1 and administration of autophagy inhibitors which largely attenuated the decreasing effect on foam cell formation. Our results demonstrated for the first time that macrophage ß-arrestin-1 protected against atherosclerosis through the induction of autophagy.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , beta-Arrestina 1 , Animales , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Autofagia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Macrófagos/metabolismo
12.
Curr Protoc ; 3(9): e839, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37668419

RESUMEN

Only 1 out of 4 mammalian arrestin subtypes, arrestin-3, facilitates the activation of c-Jun N-terminal kinase (JNK) family kinases. Here, we describe two different sets of protocols used for elucidating the mechanisms involved. One is based on reconstitution of signaling modules from the following purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it unambiguously establishes which effects are direct because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAP3Ks, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other approach is used for analyzing the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAP3Ks. However, as every cell expresses thousands of different proteins, their possible effects on the readout cannot be excluded. Nonetheless, the combination of in vitro reconstitution from purified proteins and cell-based assays makes it possible to elucidate the mechanisms of arrestin-3-dependent activation of JNK family kinases. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Construction of arrestin-3-scaffolded MKK4/7-JNK1/2/3 signaling modules in vitro using purified proteins Alternate Protocol 1: Characterization of arrestin-3-mediated JNK1/2 activation by MKK4/7 by measurement of JNK1/2 phosphorylation using immunoblotting with anti-phospho-JNK antibody Support Protocol 1: Expression, purification, and activation of GST-MKK4 Support Protocol 2: Expression, purification, and activation of GST-MKK7-His6 Support Protocol 3: Expression, purification, and activation of tagless JNK1Α1 Support Protocol 4: Expression, purification, and activation of tagless JNK2Α2 Basic Protocol 2: Analysis of the role of arrestin-3 in ASK1/MKK4/MKK7-induced JNK activation in intact cells Alternate Protocol 2: Analysis of the role of arrestin-3 in MKK4-induced JNK activation in intact cells Basic Protocol 3: Characterization of the biphasic effect of arrestin-3 on ASK1/MKK7-stimulated JNK phosphorylation in cells.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Procesamiento Proteico-Postraduccional , Animales , Fosforilación , Arrestina beta 2 , Arrestinas , MAP Quinasa Quinasa 4 , beta-Arrestina 1/genética , Mamíferos
13.
J Biol Chem ; 299(11): 105293, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774973

RESUMEN

ß-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether ß-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., ß-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate ß-arrestins, thereby limiting the ability to distinguish G protein from ß-arrestin-mediated signaling events. We used ß2-adrenergic receptor (ß2AR) and its ß2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, ß-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and ß-arrestins in controlling gene expression. We found that Gαs is not required for ß2AR and ß-arrestin conformational changes, ß-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in ß-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of ß2AR in wildtype and ß-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing ß-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of ß2AR. Overall, our results support that Gs is essential for ß2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas ß-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.


Asunto(s)
Proteínas de Unión al GTP , Regulación de la Expresión Génica , Receptores Adrenérgicos beta 2 , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células HEK293 , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Estructura Terciaria de Proteína , Isoformas de Proteínas , Activación Enzimática/genética
14.
Proc Natl Acad Sci U S A ; 120(31): e2302668120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490535

RESUMEN

Catecholamine-stimulated ß2-adrenergic receptor (ß2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous ß-agonists in the treatment of airway disease. ß2AR signaling is tightly regulated by GRKs and ß-arrestins, which together promote ß2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias ß2AR signaling toward the Gs pathway while avoiding ß-arrestin-mediated effects may provide a strategy to improve the functional consequences of ß2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the ß2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit ß-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of ß-arrestin recruitment to the ß2AR while having no effect on ß2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the ß2AR and protects against the functional desensitization of ß-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the ß2AR with minimal effects on the ß1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the ß2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the ß2AR.


Asunto(s)
Arrestina , Transducción de Señal , beta-Arrestinas/metabolismo , Arrestina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
15.
Nat Commun ; 14(1): 3328, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286565

RESUMEN

The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. ß-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A ß-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores de Neurotensina , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Arrestina/metabolismo
16.
Sci Signal ; 16(779): eabl4283, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014928

RESUMEN

The chemotactic G protein-coupled receptor GPR183 and its most potent endogenous oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-OHC) are important for immune cell positioning in secondary lymphoid tissues. This receptor-ligand pair is associated with various diseases, in some cases contributing favorably and in other cases adversely, making GPR183 an attractive target for therapeutic intervention. We investigated the mechanisms underlying GPR183 internalization and the role of internalization in the main biological function of the receptor, chemotaxis. We found that the C terminus of the receptor was important for ligand-induced internalization but less so for constitutive (ligand-independent) internalization. ß-arrestin potentiated ligand-induced internalization but was not required for ligand-induced or constitutive internalization. Caveolin and dynamin were the main mediators of both constitutive and ligand-induced receptor internalization in a mechanism independent of G protein activation. Clathrin-mediated endocytosis also contributed to constitutive GPR183 internalization in a ß-arrestin-independent manner, suggesting the existence of different pools of surface-localized GPR183. Chemotaxis mediated by GPR183 depended on receptor desensitization by ß-arrestins but could be uncoupled from internalization, highlighting an important biological role for the recruitment of ß-arrestin to GPR183. The role of distinct pathways in internalization and chemotaxis may aid in the development of GPR183-targeting drugs for specific disease contexts.


Asunto(s)
Arrestina , Arrestinas , Arrestina/metabolismo , Arrestinas/genética , Arrestinas/metabolismo , Ligandos , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Endocitosis
17.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883568

RESUMEN

WHIM syndrome is an inherited immune disorder caused by an autosomal dominant heterozygous mutation in CXCR4. The disease is characterized by neutropenia/leukopenia (secondary to retention of mature neutrophils in bone marrow), recurrent bacterial infections, treatment-refractory warts, and hypogammaglobulinemia. All mutations reported in WHIM patients lead to the truncations in the C-terminal domain of CXCR4, R334X being the most frequent. This defect prevents receptor internalization and enhances both calcium mobilization and ERK phosphorylation, resulting in increased chemotaxis in response to the unique ligand CXCL12. Here, we describe 3 patients presenting neutropenia and myelokathexis, but normal lymphocyte count and immunoglobulin levels, carrying what we believe to be a novel Leu317fsX3 mutation in CXCR4, leading to a complete truncation of its intracellular tail. The analysis of the L317fsX3 mutation in cells derived from patients and in vitro cellular models reveals unique signaling features in comparison with R334X mutation. The L317fsX3 mutation impairs CXCR4 downregulation and ß-arrestin recruitment in response to CXCL12 and reduces other signaling events - including ERK1/2 phosphorylation, calcium mobilization, and chemotaxis - all processes that are typically enhanced in cells carrying the R334X mutation. Our findings suggest that, overall, the L317fsX3 mutation may be causative of a form of WHIM syndrome not associated with an augmented CXCR4 response to CXCL12.


Asunto(s)
Proteínas de Unión al GTP , Enfermedades de Inmunodeficiencia Primaria , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/inmunología , beta-Arrestinas/genética , beta-Arrestinas/inmunología , Calcio/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Mutación , Neutropenia/genética , Neutropenia/inmunología , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/inmunología , Transducción de Señal/genética , Transducción de Señal/fisiología , Verrugas/genética , Verrugas/inmunología
18.
Cell Death Dis ; 14(1): 73, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717550

RESUMEN

Dissemination of high-grade serous ovarian cancer (HG-SOC) in the omentum and intercalation into a mesothelial cell (MC) monolayer depends on functional α5ß1 integrin (Intα5ß1) activity. Although the binding of Intα5ß1 to fibronectin drives these processes, other molecular mechanisms linked to integrin inside-out signaling might support metastatic dissemination. Here, we report a novel interactive signaling that contributes to Intα5ß1 activation and accelerates tumor cells toward invasive disease, involving the protein ß-arrestin1 (ß-arr1) and the activation of the endothelin A receptor (ETAR) by endothelin-1 (ET-1). As demonstrated in primary HG-SOC cells and SOC cell lines, ET-1 increased Intß1 and downstream FAK/paxillin activation. Mechanistically, ß-arr1 directly interacts with talin1 and Intß1, promoting talin1 phosphorylation and its recruitment to Intß1, thus fueling integrin inside-out activation. In 3D spheroids and organotypic models mimicking the omentum, ETAR/ß-arr1-driven Intα5ß1 signaling promotes the survival of cell clusters, with mesothelium-intercalation capacity and invasive behavior. The treatment with the antagonist of ETAR, Ambrisentan (AMB), and of Intα5ß1, ATN161, inhibits ET-1-driven Intα5ß1 activity in vitro, and tumor cell adhesion and spreading to intraperitoneal organs and Intß1 activity in vivo. As a prognostic factor, high EDNRA/ITGB1 expression correlates with poor HG-SOC clinical outcomes. These findings highlight a new role of ETAR/ß-arr1 operating an inside-out integrin activation to modulate the metastatic process and suggest that in the new integrin-targeting programs might be considered that ETAR/ß-arr1 regulates Intα5ß1 functional pathway.


Asunto(s)
Integrina alfa5beta1 , Neoplasias Ováricas , Receptor de Endotelina A , Talina , beta-Arrestina 1 , Femenino , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Endotelina-1/metabolismo , Neoplasias Ováricas/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Integrina alfa5beta1/metabolismo , Talina/genética , Talina/metabolismo
19.
Mol Cancer Res ; 21(3): 214-227, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573960

RESUMEN

ABSTRACT: System paclitaxel-based chemotherapy is the first-line treatment regimen of defense against breast cancer, but inherent or acquired chemotherapy resistance remains a major obstacle in breast cancer therapy. Elucidating the molecular mechanism of chemoresistance is essential to improve the outcome of patients with breast cancer. Here, we demonstrate that intraflagellar transport 20 (IFT20) is positively associated with shorter relapse-free survival in patients with system paclitaxel-based chemotherapy. High-expressed IFT20 in breast cancer cells increases resistance to cell death upon paclitaxel treatment; in contrast, IFT20 knockdown enhances apoptosis in breast cancer cells in response to paclitaxel. Mechanistically, IFT20 triggers ß-arrestin-1 to bind with apoptosis signal-regulating kinase 1 (ASK1) and promotes the ubiquitination of ASK1 degradation, leading to attenuating ASK1 signaling and its downstream JNK cascades, which helps cells to escape from cell death during paclitaxel treatment. Our results reveal that IFT20 drives paclitaxel resistance through modulating ASK1 signaling and identifies IFT20 as a potential molecular biomarker for predicting the response to paclitaxel therapeutic in breast cancer. IMPLICATIONS: IFT20 drives paclitaxel resistance through modulating ASK1 signaling and IFT20 may act as a potential molecular biomarker for predicting the response to paclitaxel therapeutic in breast cancer.


Asunto(s)
Neoplasias de la Mama , Paclitaxel , Humanos , Femenino , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/uso terapéutico , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/uso terapéutico , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Apoptosis , Resistencia a Antineoplásicos , Proteínas Portadoras
20.
Biochem Biophys Res Commun ; 640: 64-72, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36502633

RESUMEN

It has been thought that µ-opioid receptors (MOPs) activate the G protein-mediated analgesic pathway and ß-arrestin 2-mediated side effect pathway; however, ligands that only minimally recruit ß-arrestin 2 to MOPs may also cause opioid side effects. Moreover, such side effects have been induced in mutant mice lacking ß-arrestin 2 or expressing phosphorylation-deficient MOPs that do not recruit ß-arrestin 2. These findings raise the critical question of whether ß-arrestin 2 recruitment to MOP triggers side effects. Here, we show that ß-arrestin 1 and 2 are essential in the efficient activation of the Gi/o-mediated MAPK signaling at MOP. Moreover, the magnitude of ß-arrestin-mediated signals is not correlated with the magnitude of phosphorylation of the carboxyl-terminal of MOP, which is used to evaluate the ß-arrestin bias of a ligand. Instead, the molecular association with ß2-adaptin and clathrin heavy chain in the formation of clathrin-coated pits is essential for ß-arrestin to activate MAPK signaling. Our findings provide insights into G protein-coupled receptor-mediated signaling and further highlight a concept that the accumulation of molecules required for endocytosis is critical for activating intracellular signaling.


Asunto(s)
Vesículas Cubiertas por Clatrina , Quinasas de Proteína Quinasa Activadas por Mitógenos , Receptores Opioides mu , beta-Arrestina 1 , Arrestina beta 2 , Animales , Ratones , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo , Endocitosis , Fosforilación , Vesículas Cubiertas por Clatrina/metabolismo , Receptores Opioides mu/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA