Your browser doesn't support javascript.
loading
The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells.
Lilley, Sarah; LeTissier, Paul; Robbins, Jon.
Afiliación
  • Lilley S; Neural Injury and Repair Group, Centre for Neuroscience Research, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
J Neurosci ; 24(5): 1013-22, 2004 Feb 04.
Article en En | MEDLINE | ID: mdl-14762119
The conduction of acid-evoked currents in central and sensory neurons is now primarily attributed to a family of proteins called acid-sensing ion channels (ASICs). In peripheral neurons, their physiological function has been linked to nociception, mechanoreception, and taste transduction; however, their role in the CNS remains unclear. This study describes the discovery of a proton-gated current in rat retinal ganglion cells termed I(Na(H+)), which also appears to be mediated by ASICs. RT-PCR confirmed the presence of ASIC mRNA (subunits la, 2a, 2b, 3, and 4) in the rat retina. Electrophysiological investigation showed that all retinal ganglion cells respond to rapid extracellular acidification with the activation of a transient Na+ current, the size of which increases with increasing acidification between pH 6.5 and pH 3.0. I(Na(H+)) desensitizes completely in the continued presence of acid, its current-voltage relationship is linear and its reversal potential shifts with E(Na). I(Na(H+)) is reversibly inhibited by amiloride (IC(50), 188 microm) but is resistant to block by TTX (0.5 microm), Cd2+ (100 microm), procaine (10 mm), and is not activated by capsaicin (0.5 microm). I(Na(H+)) is not potentiated by Zn2+ (300 microm) or Phe-Met-Arg-Phe-amide (50microm) but is inhibited by neuropeptide-FF (50microm). Acute application of pH 6.5 to retinal ganglion cells causes sustained depolarization and repetitive firing similar to the trains of action potentials normally associated with current injection into these cells. The presence of a proton-gated current in the neural retina suggests that ASICs may have a more diverse role in the CNS.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Células Ganglionares de la Retina / Sodio / Canales de Sodio / Activación del Canal Iónico Idioma: En Revista: J Neurosci Año: 2004 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Células Ganglionares de la Retina / Sodio / Canales de Sodio / Activación del Canal Iónico Idioma: En Revista: J Neurosci Año: 2004 Tipo del documento: Article