Your browser doesn't support javascript.
loading
Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS.
Yuan, Aidong; Rao, Mala V; Sasaki, Takahiro; Chen, Yuanxin; Kumar, Asok; Liem, Ronald K H; Eyer, Joel; Peterson, Alan C; Julien, Jean-Pierre; Nixon, Ralph A.
Afiliación
  • Yuan A; Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962, USA. yuan@nki.rfmh.org
J Neurosci ; 26(39): 10006-19, 2006 Sep 27.
Article en En | MEDLINE | ID: mdl-17005864
ABSTRACT
Alpha-internexin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament (NF) triplet proteins (NF-L, NF-M, and NF-H) but has an unknown function. The earlier peak expression of alpha-internexin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that alpha-internexin and neurofilament triplet form separate filament systems. Here, we demonstrate, however, that despite a postnatal decline in expression, alpha-internexin is as abundant as the triplet in the adult CNS and exists in a relatively fixed stoichiometry with these subunits. Alpha-internexin exhibits transport and turnover rates identical to those of triplet proteins in optic axons and colocalizes with NF-M on single neurofilaments by immunogold electron microscopy. Alpha-internexin also coassembles with all three neurofilament proteins into a single network of filaments in quadruple-transfected SW13vim(-) cells. Genetically deleting NF-M alone or together with NF-H in mice dramatically reduces alpha-internexin transport and content in axons throughout the CNS. Moreover, deleting alpha-internexin potentiates the effects of NF-M deletion on NF-H and NF-L transport. Finally, overexpressing a NF-H-LacZ fusion protein in mice induces alpha-internexin and neurofilament triplet to aggregate in neuronal perikarya and greatly reduces their transport and content selectively in axons. Our data show that alpha-internexin and the neurofilament proteins are functionally interdependent. The results strongly support the view that alpha-internexin is a fourth subunit of neurofilaments in the adult CNS, providing a basis for its close relationship with neurofilaments in CNS diseases associated with neurofilament accumulation.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Axones / Filamentos Intermedios / Proteínas de Neurofilamentos / Proteínas de Filamentos Intermediarios Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Neurosci Año: 2006 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Axones / Filamentos Intermedios / Proteínas de Neurofilamentos / Proteínas de Filamentos Intermediarios Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Neurosci Año: 2006 Tipo del documento: Article