Your browser doesn't support javascript.
loading
High-frequency dynamics of liquid and supercritical water.
Bencivenga, F; Cunsolo, A; Krisch, M; Monaco, G; Ruocco, G; Sette, F.
Afiliación
  • Bencivenga F; Sincrotrone Trieste, Science Park, Basovizza, Trieste, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 1): 051202, 2007 May.
Article en En | MEDLINE | ID: mdl-17677045
ABSTRACT
The dynamic structure factor S(Q,omega) of water has been determined by high-resolution inelastic x-ray scattering (IXS) in a momentum (Q) and energy (E) transfer range extending from 2 to 4 nm{-1} and from +/-40meV . IXS spectra have been recorded along an isobaric path (400bar) in a temperature (T) interval ranging from ambient up to supercritical (T>647K) conditions. The experimental data have been described in the frame of the generalized hydrodynamic theory, utilizing a model based on the memory function approach. This model allows identifying the active relaxation processes which affect the time decay of density fluctuations, as well as a direct determination of the Q , T , and density (rho) dependencies of the involved transport parameters. The experimental spectra are well described by considering three different relaxation processes the thermal, the structural, and the instantaneous one. On approaching supercritical conditions, we observe that the microscopic mechanism responsible for the structural relaxation is no longer related to the making and breaking of intermolecular bonds, but to binary intermolecular collisions.
Buscar en Google
Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2007 Tipo del documento: Article
Buscar en Google
Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2007 Tipo del documento: Article