Your browser doesn't support javascript.
loading
Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels.
Raghunathan, A V; Aluru, N R.
Afiliación
  • Raghunathan AV; Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 1): 011202, 2007 Jul.
Article en En | MEDLINE | ID: mdl-17677433
ABSTRACT
A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2nm and 3.5nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2ns simulation time K+ ions can permeate through a 1nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.
Asunto(s)
Buscar en Google
Base de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Nanoestructuras / Electrólitos / Canales Iónicos / Modelos Químicos Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2007 Tipo del documento: Article
Buscar en Google
Base de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Nanoestructuras / Electrólitos / Canales Iónicos / Modelos Químicos Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2007 Tipo del documento: Article