Your browser doesn't support javascript.
loading
An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon.
Shenouda, Josephine; Green, Paula; Sultatos, Lester.
Afiliación
  • Shenouda J; Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
Toxicol Appl Pharmacol ; 241(2): 135-42, 2009 Dec 01.
Article en En | MEDLINE | ID: mdl-19699221
Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of alpha/beta-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted in rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K(m) of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k(i) of 3048 nM(-1) h(-1), and a K(D) of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k(i) increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k(i)s of 1.2 and 19.3 nM(-1) h(-1), respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Acetilcolinesterasa / Butirilcolinesterasa / Inhibidores de la Colinesterasa / Cloropirifos Idioma: En Revista: Toxicol Appl Pharmacol Año: 2009 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Acetilcolinesterasa / Butirilcolinesterasa / Inhibidores de la Colinesterasa / Cloropirifos Idioma: En Revista: Toxicol Appl Pharmacol Año: 2009 Tipo del documento: Article