Monomeric, trimeric, and tetrameric transition metal complexes (Mn, Fe, Co) containing N,N-bis(2-pyridylmethyl)-2-aminoethanol/-ate: preparation, crystal structure, molecular magnetism and oxidation catalysis.
Dalton Trans
; 40(21): 5762-73, 2011 Jun 07.
Article
en En
| MEDLINE
| ID: mdl-21523305
The reaction of N,N-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH), NaSCN/NaN(3), and metal (M) ions [M = Mn(II), Fe(II/III), Co(II)] in MeOH, leads to the isolation of a series of monomeric, trimeric, and tetrameric metal complexes, namely [Mn(bpaeOH)(NCS)(2)] (1), [Mn(bpaeO)(N(3))(2)] (2), [Fe(bpaeOH)(NCS)(2)] (3), [Fe(4)(bpaeO)(2)(CH(3)O)(2)(N(3))(8)] (4), [Co(bpaeOH)(NCS)(2)] (5), and [Co(3)(bpaeO)(2)(NO(3))(N(3))(4)](NO(3)) (6). These compounds have been investigated by single crystal X-ray diffractometry and magnetochemistry. In complex 1 the Mn(II) is bonded to one bpaeOH and two thiocyanate ions, while in complex 2 it is coordinated to a deprotonated bpaeO(-) and two azide ions. The oxidation states of manganese ions are 2+ for 1 and 3+ for 2, respectively, indicating that the different oxidation states depend on the type of binding anions. The structures of monomeric iron(II) and cobalt(II) complexes 3 and 5 with two thiocyanate ions are isomorphous to that of 1. Compounds 1, 2, 3, and 5 exhibit high-spin states in the temperature range 5 to 300 K. 4 contains two different iron(III) ions in an asymmetric unit, one is coordinated to a deprotonated bpaeO(-), an azide ion, and a methoxy group, and the other is bonded to three azide ions and two oxygens from bpaeO(-) and a methoxy group. Two independent iron(III) ions in 4 form a tetranuclear complex by symmetry. 4 displays both ferromagnetic and antiferromagnetic couplings (J = 9.8 and -14.3 cm(-1)) between the iron(III) ions. 6 is a mixed-valence trinuclear cobalt complex, which is formulated as Co(III)(S = 0)-Co(II)(S = 3/2)-Co(III)(S = 0). The effective magnetic moment at room temperature corresponds to the high-spin cobalt(II) ion (â¼4.27 µ(B)). Interestingly, 6 showed efficient catalytic activities toward various olefins and alcohols with modest to excellent yields, and it has been proposed that a high-valent Co(V)-oxo species might be responsible for oxygen atom transfer in the olefin epoxidation and alcohol oxidation reactions.
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Piridinas
/
Etanolamina
/
Elementos de Transición
/
Etanolaminas
/
Complejos de Coordinación
/
Magnetismo
Idioma:
En
Revista:
Dalton Trans
Asunto de la revista:
QUIMICA
Año:
2011
Tipo del documento:
Article