The complete genome sequence of a single-stranded RNA virus from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois).
J Invertebr Pathol
; 109(1): 11-9, 2012 Jan.
Article
en En
| MEDLINE
| ID: mdl-21939663
The complete genome sequence of a single-stranded RNA virus infecting the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), was identified by sequencing cDNA prepared from insects collected from the Mississippi Delta. The 9655 nucleotide positive-sense single-stranded RNA genome of the L. lineolaris single-stranded RNA virus (LyLV-1) contained a single open reading frame of 8958 nucleotides encoding a 2986 amino acid genome polypeptide. The open reading frame was flanked by untranslated regions of 603 and 69 nucleotides at the 5'- and 3'- ends of the genome, respectively. Database searches and homology based modeling was used to identify four capsid proteins (VP1-VP4), helicase/AAA-ATPase, cysteine protease (C3P), protease 2A, and the RNA-directed RNA polymerase (RdRp). In addition, a region with weak similarity to the eukaryotic structural maintenance of chromosome (SMC) domain was identified near the amino-terminal of the polyprotein and adjacent to the VP1 domain. The amino acid sequence of LyLV-1 was approximately 44.4% similar to that of sacbrood virus (SBV) of the honey bee. The genomic organization of both viruses showed remarkable similarity with the exception of highly divergent amino acid regions flanking fairly conserved structural and non-structural polypeptide regions. High similarity to the SBV genome and similarities in the genome organization and amino acid sequence with the viruses of the family Iflaviridae suggested that LyLV-1 was a novel member of this family. Virus particles were 39 nm in diameter and appeared to transmit vertically via eggs. Although this virus may only cause covert infections under normal conditions, the potential for using this virus in biological control of L. lineolaris is discussed.
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Virus ARN
/
Virosis
/
Genoma Viral
/
Hemípteros
Idioma:
En
Revista:
J Invertebr Pathol
Año:
2012
Tipo del documento:
Article