Your browser doesn't support javascript.
loading
Selectivity and mechanisms driven by reaction dynamics: the case of the gas-phase OH(-) + CH3ONO2 reaction.
de Souza, Miguel A F; Correra, Thiago C; Riveros, José M; Longo, Ricardo L.
Afiliación
  • de Souza MA; Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50.740-560 Recife, PE, Brazil.
J Am Chem Soc ; 134(46): 19004-10, 2012 Nov 21.
Article en En | MEDLINE | ID: mdl-23106516
ABSTRACT
Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH(-) + CH(3)ONO(2) reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (S(N)2@C) or the nitrogen center (S(N)2@N) as well as a proton abstraction followed by dissociation (E(CO)2) pathway. Direct dynamics simulations yield an S(N)2E(CO)2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO(2) group that scatters the incoming OH(-). In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion-molecule gas-phase reactions.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2012 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2012 Tipo del documento: Article