Your browser doesn't support javascript.
loading
Unfolding of vortices into topological stripes in a multiferroic material.
Wang, X; Mostovoy, M; Han, M G; Horibe, Y; Aoki, T; Zhu, Y; Cheong, S-W.
Afiliación
  • Wang X; Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
  • Mostovoy M; Zernile Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
  • Han MG; Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA.
  • Horibe Y; Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
  • Aoki T; JEOL USA, Inc., Peabody, Massachusetts 01960, USA.
  • Zhu Y; Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA.
  • Cheong SW; Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
Phys Rev Lett ; 112(24): 247601, 2014 Jun 20.
Article en En | MEDLINE | ID: mdl-24996108
ABSTRACT
Multiferroic hexagonal RMnO(3) (R=rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.
Buscar en Google
Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2014 Tipo del documento: Article
Buscar en Google
Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2014 Tipo del documento: Article