Your browser doesn't support javascript.
loading
Large-scale automatic reconstruction of neuronal processes from electron microscopy images.
Kaynig, Verena; Vazquez-Reina, Amelio; Knowles-Barley, Seymour; Roberts, Mike; Jones, Thouis R; Kasthuri, Narayanan; Miller, Eric; Lichtman, Jeff; Pfister, Hanspeter.
Afiliación
  • Kaynig V; School of Engineering and Applied Sciences, Harvard University, United States.
  • Vazquez-Reina A; School of Engineering and Applied Sciences, Harvard University, United States; Department of Computer Science at Tufts University, United States.
  • Knowles-Barley S; Department of Molecular and Cellular Biology, Harvard University, United States.
  • Roberts M; School of Engineering and Applied Sciences, Harvard University, United States.
  • Jones TR; School of Engineering and Applied Sciences, Harvard University, United States; Department of Molecular and Cellular Biology, Harvard University, United States.
  • Kasthuri N; Department of Molecular and Cellular Biology, Harvard University, United States.
  • Miller E; Department of Computer Science at Tufts University, United States.
  • Lichtman J; Department of Molecular and Cellular Biology, Harvard University, United States.
  • Pfister H; School of Engineering and Applied Sciences, Harvard University, United States.
Med Image Anal ; 22(1): 77-88, 2015 May.
Article en En | MEDLINE | ID: mdl-25791436
ABSTRACT
Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000 µm(3) volume of brain tissue over a cube of 30 µm in each dimension corresponding to 1000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Encéfalo / Reconocimiento de Normas Patrones Automatizadas / Microscopía Electrónica / Interpretación de Imagen Asistida por Computador / Imagenología Tridimensional / Neuronas Tipo de estudio: Diagnostic_studies / Qualitative_research Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2015 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Encéfalo / Reconocimiento de Normas Patrones Automatizadas / Microscopía Electrónica / Interpretación de Imagen Asistida por Computador / Imagenología Tridimensional / Neuronas Tipo de estudio: Diagnostic_studies / Qualitative_research Idioma: En Revista: Med Image Anal Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2015 Tipo del documento: Article