Wnt5a inhibits K(+) currents in hippocampal synapses through nitric oxide production.
Mol Cell Neurosci
; 68: 314-22, 2015 Sep.
Article
en En
| MEDLINE
| ID: mdl-26311509
Hippocampal synapses play a key role in memory and learning processes by inducing long-term potentiation and depression. Wnt signaling is essential in the development and maintenance of synapses via several mechanisms. We have previously found that Wnt5a induces the production of nitric oxide (NO), which modulates NMDA receptor expression in the postsynaptic regions of hippocampal neurons. Here, we report that Wnt5a selectively inhibits a voltage-gated K(+) current (Kv current) and increases synaptic activity in hippocampal slices. Further supporting a specific role for Wnt5a, the soluble Frizzled receptor protein (sFRP-2; a functional Wnt antagonist) fully inhibits the effects of Wnt5a. We additionally show that these responses to Wnt5a are mediated by activation of a ROR2 receptor and increased NO production because they are suppressed by the shRNA-mediated knockdown of ROR2 and by 7-nitroindazole, a specific inhibitor of neuronal NOS. Together, our results show that Wnt5a increases NO production by acting on ROR2 receptors, which in turn inhibit Kv currents. These results reveal a novel mechanism by which Wnt5a may regulate the excitability of hippocampal neurons.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Sinapsis
/
Canales de Potasio
/
Proteínas Wnt
/
Hipocampo
/
Neuronas
/
Óxido Nítrico
Idioma:
En
Revista:
Mol Cell Neurosci
Asunto de la revista:
BIOLOGIA MOLECULAR
/
NEUROLOGIA
Año:
2015
Tipo del documento:
Article