Your browser doesn't support javascript.
loading
Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans.
Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L J; Wöhnert, Jens; Entian, Karl-Dieter.
Afiliación
  • Meyer B; Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany.
  • Wurm JP; Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany.
  • Sharma S; RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB).
  • Immer C; Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany.
  • Pogoryelov D; Institute of Biochemistry, Goethe University, Frankfurt/M, Germany.
  • Kötter P; Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany.
  • Lafontaine DL; RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB).
  • Wöhnert J; Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany woehnert@bio.uni-frankfurt.de.
  • Entian KD; Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany entian@bio.uni-frankfurt.de.
Nucleic Acids Res ; 44(9): 4304-16, 2016 05 19.
Article en En | MEDLINE | ID: mdl-27084949
The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / ARN Ribosómico 18S / Transferasas Alquil y Aril Tipo de estudio: Prognostic_studies Idioma: En Revista: Nucleic Acids Res Año: 2016 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / ARN Ribosómico 18S / Transferasas Alquil y Aril Tipo de estudio: Prognostic_studies Idioma: En Revista: Nucleic Acids Res Año: 2016 Tipo del documento: Article