Discovery and Optimization of 1-Phenoxy-2-aminoindanes as Potent, Selective, and Orally Bioavailable Inhibitors of the Na+/H+ Exchanger Type 3 (NHE3).
J Med Chem
; 59(19): 8812-8829, 2016 10 13.
Article
en En
| MEDLINE
| ID: mdl-27606885
The design, synthesis, and structure-activity relationship of 1-phenoxy-2-aminoindanes as inhibitors of the Na+/H+ exchanger type 3 (NHE3) are described based on a hit from high-throughput screening (HTS). The chemical optimization resulted in the discovery of potent, selective, and orally bioavailable NHE3 inhibitors with 13d as best compound, showing high in vitro permeability and lacking CYP2D6 inhibition as main optimization parameters. Aligning 1-phenoxy-2-aminoindanes onto the X-ray structure of 13d then provided 3D-QSAR models for NHE3 inhibition capturing guidelines for optimization. These models showed good correlation coefficients and allowed for activity estimation. In silico ADMET models for Caco-2 permeability and CYP2D6 inhibition were also successfully applied for this series. Moreover, docking into the CYP2D6 X-ray structure provided a reliable alignment for 3D-QSAR models. Finally 13d, renamed as SAR197, was characterized in vitro and by in vivo pharmacokinetic (PK) and pharmacological studies to unveil its potential for reduction of obstructive sleep apneas.
Buscar en Google
Base de datos:
MEDLINE
Asunto principal:
Intercambiadores de Sodio-Hidrógeno
/
Indanos
Idioma:
En
Revista:
J Med Chem
Asunto de la revista:
QUIMICA
Año:
2016
Tipo del documento:
Article