Your browser doesn't support javascript.
loading
A human brain network derived from coma-causing brainstem lesions.
Fischer, David B; Boes, Aaron D; Demertzi, Athena; Evrard, Henry C; Laureys, Steven; Edlow, Brian L; Liu, Hesheng; Saper, Clifford B; Pascual-Leone, Alvaro; Fox, Michael D; Geerling, Joel C.
Afiliación
  • Fischer DB; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Boes AD; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Demertzi A; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Evrard HC; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Laureys S; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Edlow BL; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Liu H; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Saper CB; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Pascual-Leone A; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Fox MD; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
  • Geerling JC; From the Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology (D.B.F., A.D.B., A.P.-L., M.D.F.), and Department of Neurology (C.B.S., A.P.-L., M.D.F., J.C.G.), Harvard Medical School and Beth Israel Deaconess Medical Center, Boston; Harvar
Neurology ; 87(23): 2427-2434, 2016 Dec 06.
Article en En | MEDLINE | ID: mdl-27815400
OBJECTIVE: To characterize a brainstem location specific to coma-causing lesions, and its functional connectivity network. METHODS: We compared 12 coma-causing brainstem lesions to 24 control brainstem lesions using voxel-based lesion-symptom mapping in a case-control design to identify a site significantly associated with coma. We next used resting-state functional connectivity from a healthy cohort to identify a network of regions functionally connected to this brainstem site. We further investigated the cortical regions of this network by comparing their spatial topography to that of known networks and by evaluating their functional connectivity in patients with disorders of consciousness. RESULTS: A small region in the rostral dorsolateral pontine tegmentum was significantly associated with coma-causing lesions. In healthy adults, this brainstem site was functionally connected to the ventral anterior insula (AI) and pregenual anterior cingulate cortex (pACC). These cortical areas aligned poorly with previously defined resting-state networks, better matching the distribution of von Economo neurons. Finally, connectivity between the AI and pACC was disrupted in patients with disorders of consciousness, and to a greater degree than other brain networks. CONCLUSIONS: Injury to a small region in the pontine tegmentum is significantly associated with coma. This brainstem site is functionally connected to 2 cortical regions, the AI and pACC, which become disconnected in disorders of consciousness. This network of brain regions may have a role in the maintenance of human consciousness.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Tronco Encefálico / Coma Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Neurology Año: 2016 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Tronco Encefálico / Coma Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Neurology Año: 2016 Tipo del documento: Article