Your browser doesn't support javascript.
loading
NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis.
Lozhkin, Andrey; Vendrov, Aleksandr E; Pan, Hua; Wickline, Samuel A; Madamanchi, Nageswara R; Runge, Marschall S.
Afiliación
  • Lozhkin A; Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA.
  • Vendrov AE; Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA.
  • Pan H; Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA.
  • Wickline SA; Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA.
  • Madamanchi NR; Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA.
  • Runge MS; Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA. Electronic address: mrunge@med.umich.edu.
J Mol Cell Cardiol ; 102: 10-21, 2017 01.
Article en En | MEDLINE | ID: mdl-27986445
ABSTRACT
We recently reported that increased NADPH oxidase 4 (NOX4) expression and activity during aging results in enhanced cellular and mitochondrial oxidative stress, vascular inflammation, dysfunction, and atherosclerosis. The goal of the present study was to elucidate the molecular mechanism(s) for these effects and determine the importance of NOX4 modulation of proinflammatory gene expression in mouse vascular smooth muscle cells (VSMCs). A novel peptide-mediated siRNA transfection approach was used to inhibit Nox4 expression with minimal cellular toxicity. Using melittin-derived peptide p5RHH, we achieved significantly higher transfection efficiency (92% vs. 85% with Lipofectamine) and decreased toxicity (p<0.001 vs. Lipofectamine in MTT and p<0.0001 vs. Lipofectamine in LDH assays) in VSMCs. TGFß1 significantly upregulates Nox4 mRNA (p<0.01) and protein (p<0.01) expression in VSMCs. p5RHH-mediated Nox4 siRNA transfection greatly attenuated TGFß1-induced upregulation of Nox4 mRNA (p<0.01) and protein (p<0.0001) levels and decreased hydrogen peroxide production (p<0.0001). Expression of pro-inflammatory genes Ccl2, Ccl5, Il6, and Vcam1 was significantly upregulated in VSMCs in several settings cells isolated from aged vs. young wild-type mice, in atherosclerotic arteries of Apoe-/- mice, and atherosclerotic human carotid arteries and correlated with NOX4 expression. p5RHH-mediated Nox4 siRNA transfection significantly attenuated the expression of these pro-inflammatory genes in TGFß1-treated mouse VSMCs, with the highest degree of inhibition in the expression of Il6. p5RHH peptide-mediated knockdown of TGFß-activated kinase 1 (TAK1, also known as Map3k7), Jun, and Rela, but not Nfkb2, downregulated TGFß1-induced Nox4 expression in VSMCs. Together, these data demonstrate that increased expression and activation of NOX4, which might result from increased TGFß1 levels seen during aging, induces a proinflammatory phenotype in VSMCs, enhancing atherosclerosis.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Vasculitis / Envejecimiento / NADPH Oxidasas / Aterosclerosis Tipo de estudio: Prognostic_studies Idioma: En Revista: J Mol Cell Cardiol Año: 2017 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Vasculitis / Envejecimiento / NADPH Oxidasas / Aterosclerosis Tipo de estudio: Prognostic_studies Idioma: En Revista: J Mol Cell Cardiol Año: 2017 Tipo del documento: Article