Your browser doesn't support javascript.
loading
T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone.
Flerin, Nina C; Chen, Huabiao; Glover, Tynisha D; Lamothe, Pedro A; Zheng, Jian Hua; Fang, Justin W; Ndhlovu, Zaza M; Newell, Evan W; Davis, Mark M; Walker, Bruce D; Goldstein, Harris.
Afiliación
  • Flerin NC; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
  • Chen H; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.
  • Glover TD; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA.
  • Lamothe PA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
  • Zheng JH; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.
  • Fang JW; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA.
  • Ndhlovu ZM; Biological Sciences in Public Health, Harvard University, Boston, Massachusetts, USA.
  • Newell EW; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
  • Davis MM; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA.
  • Walker BD; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA.
  • Goldstein H; Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore.
J Virol ; 91(6)2017 03 15.
Article en En | MEDLINE | ID: mdl-28077649
Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and ß chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Receptores de Antígenos de Linfocitos T / Linfocitos T Citotóxicos / VIH-1 Idioma: En Revista: J Virol Año: 2017 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Receptores de Antígenos de Linfocitos T / Linfocitos T Citotóxicos / VIH-1 Idioma: En Revista: J Virol Año: 2017 Tipo del documento: Article