Your browser doesn't support javascript.
loading
Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation.
Ulvestad, A; Welland, M J; Cha, W; Liu, Y; Kim, J W; Harder, R; Maxey, E; Clark, J N; Highland, M J; You, H; Zapol, P; Hruszkewycz, S O; Stephenson, G B.
Afiliación
  • Ulvestad A; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Welland MJ; Fuel &Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, Ontario K0J 1J0, Canada.
  • Cha W; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Liu Y; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Kim JW; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Harder R; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Maxey E; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Clark JN; Stanford PULSE Institute, SLAC National Accelerator Laboratory Menlo Park, California 94025, USA.
  • Highland MJ; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • You H; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Zapol P; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Hruszkewycz SO; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Stephenson GB; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Nat Mater ; 16(5): 565-571, 2017 05.
Article en En | MEDLINE | ID: mdl-28092689
ABSTRACT
Crystallographic imperfections significantly alter material properties and their response to external stimuli, including solute-induced phase transformations. Despite recent progress in imaging defects using electron and X-ray techniques, in situ three-dimensional imaging of defect dynamics remains challenging. Here, we use Bragg coherent diffractive imaging to image defects during the hydriding phase transformation of palladium nanocrystals. During constant-pressure experiments we observe that the phase transformation begins after dislocation nucleation close to the phase boundary in particles larger than 300 nm. The three-dimensional phase morphology suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than to the core-shell model commonly assumed. We substantiate this using three-dimensional phase field modelling, demonstrating how phase morphology affects the critical size for dislocation nucleation. Our results reveal how particle size and phase morphology affects transformations in the PdH system.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2017 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2017 Tipo del documento: Article