Your browser doesn't support javascript.
loading
Improved α-Amylase Production by Dephosphorylation Mutation of CreD, an Arrestin-Like Protein Required for Glucose-Induced Endocytosis of Maltose Permease and Carbon Catabolite Derepression in Aspergillus oryzae.
Tanaka, Mizuki; Hiramoto, Tetsuya; Tada, Hinako; Shintani, Takahiro; Gomi, Katsuya.
Afiliación
  • Tanaka M; Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Japan.
  • Hiramoto T; Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Japan.
  • Tada H; Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Japan.
  • Shintani T; Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Japan.
  • Gomi K; Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Japan katsuya.gomi.a6@tohoku.ac.jp.
Appl Environ Microbiol ; 83(13)2017 07 01.
Article en En | MEDLINE | ID: mdl-28455339
ABSTRACT
Aspergillusoryzae produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of creD inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by creD deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene creB The α-amylase activity of the creB mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and creB disruption increased the production of amylolytic enzymes in A. oryzaeIMPORTANCE In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by their ubiquitination, and arrestin-like proteins act as adaptors of transporters and ubiquitin ligases. In this study, we showed that CreD, an arrestin-like protein, is involved in glucose-induced endocytosis of maltose permease and carbon catabolite derepression of amylase gene expression in Aspergillusoryzae Dephosphorylation of CreD was required for CCR relief triggered by the disruption of creB, which encodes a deubiquitinating enzyme; a combination of the phosphorylation-defective mutation of CreD and creB disruption dramatically improved α-amylase production. This study shows the dual function of an arrestin-like protein and provides a novel approach for improving the production of amylolytic enzymes in A. oryzae.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aspergillus oryzae / Proteínas de Transporte de Monosacáridos / Proteínas Fúngicas / Arrestina / Endocitosis / Alfa-Amilasas / Represión Catabólica Idioma: En Revista: Appl Environ Microbiol Año: 2017 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aspergillus oryzae / Proteínas de Transporte de Monosacáridos / Proteínas Fúngicas / Arrestina / Endocitosis / Alfa-Amilasas / Represión Catabólica Idioma: En Revista: Appl Environ Microbiol Año: 2017 Tipo del documento: Article