Your browser doesn't support javascript.
loading
Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries.
Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Swierczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane.
Afiliación
  • Odziomek M; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
  • Chaput F; Faculty of Materials Science and Ceramics, Department of Chemistry of Silicates and Macromolecules, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
  • Rutkowska A; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
  • Swierczek K; Faculty of Energy and Fuels, Department of Hydrogen Energy, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
  • Olszewska D; Faculty of Energy and Fuels, Department of Hydrogen Energy, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
  • Sitarz M; Faculty of Energy and Fuels, Department of Hydrogen Energy, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
  • Lerouge F; Faculty of Materials Science and Ceramics, Department of Chemistry of Silicates and Macromolecules, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
  • Parola S; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
Nat Commun ; 8: 15636, 2017 05 26.
Article en En | MEDLINE | ID: mdl-28548100
ABSTRACT
High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article