Your browser doesn't support javascript.
loading
Citalopram inhibits platelet function independently of SERT-mediated 5-HT transport.
Roweth, Harvey G; Yan, Ruoling; Bedwani, Nader H; Chauhan, Alisha; Fowler, Nicole; Watson, Alice H; Malcor, Jean-Daniel; Sage, Stewart O; Jarvis, Gavin E.
Afiliación
  • Roweth HG; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.
  • Yan R; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.
  • Bedwani NH; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.
  • Chauhan A; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.
  • Fowler N; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.
  • Watson AH; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.
  • Malcor JD; Department of Biochemistry, University of Cambridge, Cambridge, U.K.
  • Sage SO; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.
  • Jarvis GE; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K.. gej1000@cam.ac.uk.
Sci Rep ; 8(1): 3494, 2018 02 22.
Article en En | MEDLINE | ID: mdl-29472624
ABSTRACT
Citalopram prevents serotonin (5-HT) uptake into platelets by blocking the serotonin reuptake transporter (SERT). Although some clinical data suggest that selective serotonin reuptake inhibitors (SSRIs) may affect haemostasis and thrombosis, these poorly-characterised effects are not well understood mechanistically and useful in vitro data is limited. We sought to determine whether the inhibitory effects of citalopram on platelets are mediated via its pharmacological inhibition of 5-HT transport. We quantified the inhibitory potency of (RS)-, (R)- and (S)-citalopram on platelet function. If SERT blockade is the primary mechanism for citalopram-mediated platelet inhibition, these potencies should show quantitative congruence with inhibition of 5-HT uptake. Our data show that citalopram inhibits platelet aggregation, adhesion and thromboxane production with no difference in potency between (R)- and (S)-isomers. By contrast, citalopram had a eudysmic ratio of approximately 17 (S > R) for SERT blockade. Furthermore, nanomolar concentrations of citalopram inhibited 5-HT uptake into platelets but had no effect on other platelet functions, which were inhibited by micromolar concentrations. Our data indicate that citalopram-induced inhibition of platelets in vitro is not mediated by blockade of 5-HT transport. This raises a new question for future investigation by what mechanism(s) does citalopram inhibit platelets?
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Citalopram / Serotonina / Agregación Plaquetaria / Proteínas de Transporte de Serotonina en la Membrana Plasmática Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Citalopram / Serotonina / Agregación Plaquetaria / Proteínas de Transporte de Serotonina en la Membrana Plasmática Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article