Your browser doesn't support javascript.
loading
Surfactant replacement therapy in combination with different non-invasive ventilation techniques in spontaneously-breathing, surfactant-depleted adult rabbits.
Ricci, Francesca; Casiraghi, Costanza; Storti, Matteo; D'Alò, Francesco; Catozzi, Chiara; Ciccimarra, Roberta; Ravanetti, Francesca; Cacchioli, Antonio; Villetti, Gino; Civelli, Maurizio; Murgia, Xabi; Carnielli, Virgilio; Salomone, Fabrizio.
Afiliación
  • Ricci F; Chiesi Farmaceutici, R&D Department, Parma, Italy.
  • Casiraghi C; Chiesi Farmaceutici, R&D Department, Parma, Italy.
  • Storti M; Chiesi Farmaceutici, R&D Department, Parma, Italy.
  • D'Alò F; Chiesi Farmaceutici, R&D Department, Parma, Italy.
  • Catozzi C; Chiesi Farmaceutici, R&D Department, Parma, Italy.
  • Ciccimarra R; Department of Veterinary Science, University of Parma, Parma, Italy.
  • Ravanetti F; Department of Veterinary Science, University of Parma, Parma, Italy.
  • Cacchioli A; Department of Veterinary Science, University of Parma, Parma, Italy.
  • Villetti G; Chiesi Farmaceutici, R&D Department, Parma, Italy.
  • Civelli M; Chiesi Farmaceutici, R&D Department, Parma, Italy.
  • Murgia X; Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.
  • Carnielli V; Division of Neonatology, Polytechnic University of Marche and Salesi Children's Hospital, Ancona, Italy.
  • Salomone F; Chiesi Farmaceutici, R&D Department, Parma, Italy.
PLoS One ; 13(7): e0200542, 2018.
Article en En | MEDLINE | ID: mdl-30001410
ABSTRACT
Nasal intermittent positive pressure ventilation (NIPPV) holds great potential as a primary ventilation support method for Respiratory Distress Syndrome (RDS). The use of NIPPV may also be of great value combined with minimally invasive surfactant delivery. Our aim was to implement an in vivo model of RDS, which can be managed with different non-invasive ventilation (NIV) strategies, including non-synchronized NIPPV, synchronized NIPPV (SNIPPV), and nasal continuous positive airway pressure (NCPAP). Forty-two surfactant-depleted adult rabbits were allocated in six different groups three groups of animals were treated with only NIV for three hours (NIPPV, SNIPPV, and NCPAP groups), while three other groups were treated with surfactant (SF) followed by NIV (NIPPV+SF, SNIPPV+SF, and NCPAP+SF groups). Arterial gas exchange, ventilation indices, and dynamic compliance were assessed. Post-mortem the lungs were sampled for histological evaluation. Surfactant depletion was successfully achieved by repeated broncho-alveolar lavages (BALs). After BALs, all animals developed a moderate respiratory distress, which could not be reverted by merely applying NIV. Conversely, surfactant administration followed by NIV induced a rapid improvement of arterial oxygenation in all surfactant-treated groups. Breath synchronization was associated with a significantly better response in terms of gas exchange and dynamic compliance compared to non-synchronized NIPPV, showing also the lowest injury scores after histological assessment. The proposed in vivo model of surfactant deficiency was successfully managed with NCPAP, NIPPV, or SNIPPV; this model resembles a moderate respiratory distress and it is suitable for the preclinical testing of less invasive surfactant administration techniques.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Síndrome de Dificultad Respiratoria / Surfactantes Pulmonares / Respiración con Presión Positiva Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2018 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Síndrome de Dificultad Respiratoria / Surfactantes Pulmonares / Respiración con Presión Positiva Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2018 Tipo del documento: Article