Your browser doesn't support javascript.
loading
Comparing Different Methods to Create a Linear Model for Uncontrolled Manifold Analysis.
Tuitert, Inge; Valk, Tim A; Otten, Egbert; Golenia, Laura; Bongers, Raoul M.
Afiliación
  • Tuitert I; 1 Aix-Marseille University.
  • Valk TA; 2 University of Groningen.
  • Otten E; 2 University of Groningen.
  • Golenia L; 2 University of Groningen.
  • Bongers RM; 2 University of Groningen.
Motor Control ; 23(2): 189-204, 2019 Apr 01.
Article en En | MEDLINE | ID: mdl-30208802
An essential step in uncontrolled manifold analysis is creating a linear model that relates changes in elemental variables to changes in performance variables. Such linear models are usually created by means of an analytical method. However, a multiple regression analysis is also suggested. Whereas the analytical method includes only averages of joint angles, the regression method uses the distribution of all joint angles. We examined whether the latter model is more suitable to describe manual reaching movements. The relation between estimated and measured fingertip-position deviations from the mean of individual trials, the relation between fingertip variability and nongoal-equivalent variability, goal-equivalent variability, and nongoal-equivalent variability indicated that the linear model created with the regression method gives a more accurate description of the reaching data. Therefore, we suggest the usage of the regression method to create the linear model for uncontrolled manifold analysis in tasks that require the approximation of the linear model.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fenómenos Biomecánicos / Modelos Lineales Tipo de estudio: Prognostic_studies Idioma: En Revista: Motor Control Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fenómenos Biomecánicos / Modelos Lineales Tipo de estudio: Prognostic_studies Idioma: En Revista: Motor Control Asunto de la revista: NEUROLOGIA / PSICOFISIOLOGIA Año: 2019 Tipo del documento: Article