Your browser doesn't support javascript.
loading
Growth of Cyanobacteria Is Constrained by the Abundance of Light and Carbon Assimilation Proteins.
Jahn, Michael; Vialas, Vital; Karlsen, Jan; Maddalo, Gianluca; Edfors, Fredrik; Forsström, Björn; Uhlén, Mathias; Käll, Lukas; Hudson, Elton P.
Afiliación
  • Jahn M; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Vialas V; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Karlsen J; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Maddalo G; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Edfors F; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Forsström B; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Uhlén M; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Käll L; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
  • Hudson EP; School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden. Electronic address: paul.hudson@scilifelab.se.
Cell Rep ; 25(2): 478-486.e8, 2018 10 09.
Article en En | MEDLINE | ID: mdl-30304686
ABSTRACT
Cyanobacteria must balance separate demands for energy generation, carbon assimilation, and biomass synthesis. We used shotgun proteomics to investigate proteome allocation strategies in the model cyanobacterium Synechocystis sp. PCC 6803 as it adapted to light and inorganic carbon (Ci) limitation. When partitioning the proteome into seven functional sectors, we find that sector sizes change linearly with growth rate. The sector encompassing ribosomes is significantly smaller than in E. coli, which may explain the lower maximum growth rate in Synechocystis. Limitation of light dramatically affects multiple proteome sectors, whereas the effect of Ci limitation is weak. Carbon assimilation proteins respond more strongly to changes in light intensity than to Ci. A coarse-grained cell economy model generally explains proteome trends. However, deviations from model predictions suggest that the large proteome sectors for carbon and light assimilation are not optimally utilized under some growth conditions and may constrain the proteome space available to ribosomes.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Dióxido de Carbono / Regulación Bacteriana de la Expresión Génica / Cianobacterias / Proteoma / Luz Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Rep Año: 2018 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Dióxido de Carbono / Regulación Bacteriana de la Expresión Génica / Cianobacterias / Proteoma / Luz Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Rep Año: 2018 Tipo del documento: Article