Your browser doesn't support javascript.
loading
In vivo modeling of human neuron dynamics and Down syndrome.
Real, Raquel; Peter, Manuel; Trabalza, Antonio; Khan, Shabana; Smith, Mark A; Dopp, Joana; Barnes, Samuel J; Momoh, Ayiba; Strano, Alessio; Volpi, Emanuela; Knott, Graham; Livesey, Frederick J; De Paola, Vincenzo.
Afiliación
  • Real R; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
  • Peter M; Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciencias Biomedicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
  • Trabalza A; Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK.
  • Khan S; Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK.
  • Smith MA; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
  • Dopp J; Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK.
  • Barnes SJ; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
  • Momoh A; Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK.
  • Strano A; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
  • Volpi E; Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK.
  • Knott G; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
  • Livesey FJ; UK Dementia Research Institute, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
  • De Paola V; Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK.
Science ; 362(6416)2018 11 16.
Article en En | MEDLINE | ID: mdl-30309905
ABSTRACT
Harnessing the potential of human stem cells for modeling the physiology and diseases of cortical circuitry requires monitoring cellular dynamics in vivo. We show that human induced pluripotent stem cell (iPSC)-derived cortical neurons transplanted into the adult mouse cortex consistently organized into large (up to ~100 mm3) vascularized neuron-glia territories with complex cytoarchitecture. Longitudinal imaging of >4000 grafted developing human neurons revealed that neuronal arbors refined via branch-specific retraction; human synaptic networks substantially restructured over 4 months, with balanced rates of synapse formation and elimination; and oscillatory population activity mirrored the patterns of fetal neural networks. Lastly, we found increased synaptic stability and reduced oscillations in transplants from two individuals with Down syndrome, demonstrating the potential of in vivo imaging in human tissue grafts for patient-specific modeling of cortical development, physiology, and pathogenesis.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Corteza Cerebral / Síndrome de Down / Neurogénesis / Modelos Biológicos / Plasticidad Neuronal / Neuronas Idioma: En Revista: Science Año: 2018 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Corteza Cerebral / Síndrome de Down / Neurogénesis / Modelos Biológicos / Plasticidad Neuronal / Neuronas Idioma: En Revista: Science Año: 2018 Tipo del documento: Article