Your browser doesn't support javascript.
loading
Oxygen Electrocatalysis at MnIII-O x-C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?
Wu, Kuang-Hsu; Huang, Xing; Tahini, Hassan; Kappen, Peter; Huang, Rui; Tan, Xin; Jang, Ling-Yun; Ding, Yuxiao; Smith, Sean C; Qi, Wei; Gentle, Ian R; Su, Dang-Sheng; Amal, Rose; Wang, Da-Wei.
Afiliación
  • Wu KH; PartCat Research Group, School of Chemical Engineering , The University of New South Wales , Sydney , NSW 2052 , Australia.
  • Huang X; School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia.
  • Tahini H; AC Department , Fritz-Haber Institute of Max-Planck Society , 14195 Berlin , Germany.
  • Kappen P; Integrated Materials Design Laboratory, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia.
  • Huang R; Synchrotron Light Source , Australian Synchrotron , Melbourne , VIC 3168 , Australia.
  • Tan X; Institute of Metal Research , Chinese Academy of Sciences , Shenyang , Liaoning 110016 , China.
  • Jang LY; Integrated Materials Design Laboratory, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia.
  • Ding Y; Research Division , National Synchrotron Radiation Research Centre , Hsinchu 300 , Taiwan.
  • Smith SC; Max-Planck Institute for Chemical Energy Conversion , 45470 Mülheim , Germany.
  • Qi W; Integrated Materials Design Laboratory, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia.
  • Gentle IR; Institute of Metal Research , Chinese Academy of Sciences , Shenyang , Liaoning 110016 , China.
  • Su DS; School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia.
  • Amal R; AC Department , Fritz-Haber Institute of Max-Planck Society , 14195 Berlin , Germany.
  • Wang DW; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , Liaoning 116023 , China.
ACS Appl Mater Interfaces ; 11(1): 706-713, 2019 Jan 09.
Article en En | MEDLINE | ID: mdl-30499295
The interface at the metal oxide-carbon hybrid heterojunction is the source to the well-known "synergistic effect" in catalysis. Understanding the structure-function properties is key for designing more advanced catalyst-support systems. Using a model MnIII-O x single-layer catalyst on carbon, we herein report a full elucidation to the catalytic synergism at the hybrid heterojunction in the oxygen reduction reaction (ORR). The successful fabrication of the single-layer catalyst from bottom-up is fully characterized by the X-ray absorption fine structure and high-resolution transmission electron microscopy. For oxygen electrocatalysis over this model hybrid heterostructure, our results, from both theory and experiment, show that the synergistic ORR truly undergoes a cooperated two-step electrocatalysis with catalytic promotion (Δ Eonset = 60 mV) near the heterojunction and over the single-layer catalyst through an interfacial electronic interplay, rather than an abstruse transition towards a one-step dissociative pathway. Finally, we report a superior peroxide-reducing activity of 432.5 mA cm-2 mg(M)-1 over the MnIII-O x single-layer.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article