Your browser doesn't support javascript.
loading
Superior Dispersal Ability Can Lead to Persistent Ecological Dominance throughout Succession.
Boynton, Primrose J; Peterson, Celeste N; Pringle, Anne.
Afiliación
  • Boynton PJ; Environmental Genomics Working Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany pboynton@evolbio.mpg.de.
  • Peterson CN; Department of Biology, Suffolk University, Boston, Massachusetts, USA.
  • Pringle A; Departments of Botany and Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Appl Environ Microbiol ; 85(6)2019 03 15.
Article en En | MEDLINE | ID: mdl-30635382
ABSTRACT
A large number of descriptive surveys have shown that microbial communities experience successional changes over time and that ecological dominance is common in the microbial world. However, direct evidence for the ecological processes mediating succession or causing ecological dominance remains rare. Different dispersal abilities among species may be a key mechanism. We surveyed fungal diversity within a metacommunity of pitchers of the model carnivorous plant Sarracenia purpurea and discovered that the yeast Candida pseudoglaebosa was ecologically dominant. Its frequency in the metacommunity increased during the growing season, and it was not replaced by other taxa. We next measured its competitive ability in a manipulative laboratory experiment and tracked its dispersal over time in nature. Despite its dominance, C. pseudoglaebosa is not a superior competitor. Instead, it is a superior disperser it arrives in pitchers earlier, and disperses into more pitchers, than other fungi. Differential dispersal across the spatially structured metacommunity of individual pitchers emerges as a key driver of the continuous dominance of C. pseudoglaebosa during succession.IMPORTANCE Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Sarraceniaceae / Microbiota / Hongos Tipo de estudio: Qualitative_research Idioma: En Revista: Appl Environ Microbiol Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Sarraceniaceae / Microbiota / Hongos Tipo de estudio: Qualitative_research Idioma: En Revista: Appl Environ Microbiol Año: 2019 Tipo del documento: Article