Your browser doesn't support javascript.
loading
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons.
Torres-Méndez, Antonio; Bonnal, Sophie; Marquez, Yamile; Roth, Jonathan; Iglesias, Marta; Permanyer, Jon; Almudí, Isabel; O'Hanlon, Dave; Guitart, Tanit; Soller, Matthias; Gingras, Anne-Claude; Gebauer, Fátima; Rentzsch, Fabian; Blencowe, Benjamin J; Valcárcel, Juan; Irimia, Manuel.
Afiliación
  • Torres-Méndez A; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
  • Bonnal S; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
  • Marquez Y; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
  • Roth J; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Iglesias M; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
  • Permanyer J; Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
  • Almudí I; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
  • O'Hanlon D; Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
  • Guitart T; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Soller M; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
  • Gingras AC; School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
  • Gebauer F; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
  • Rentzsch F; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
  • Blencowe BJ; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
  • Valcárcel J; Universitat Pompeu Fabra, Barcelona, Spain.
  • Irimia M; Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
Nat Ecol Evol ; 3(4): 691-701, 2019 04.
Article en En | MEDLINE | ID: mdl-30833759
The mechanisms by which entire programmes of gene regulation emerged during evolution are poorly understood. Neuronal microexons represent the most conserved class of alternative splicing in vertebrates, and are critical for proper brain development and function. Here, we discover neural microexon programmes in non-vertebrate species and trace their origin to bilaterian ancestors through the emergence of a previously uncharacterized 'enhancer of microexons' (eMIC) protein domain. The eMIC domain originated as an alternative, neural-enriched splice isoform of the pan-eukaryotic Srrm2/SRm300 splicing factor gene, and subsequently became fixed in the vertebrate and neuronal-specific splicing regulator Srrm4/nSR100 and its paralogue Srrm3. Remarkably, the eMIC domain is necessary and sufficient for microexon splicing, and functions by interacting with the earliest components required for exon recognition. The emergence of a novel domain with restricted expression in the nervous system thus resulted in the evolution of splicing programmes that qualitatively expanded the neuronal molecular complexity in bilaterians.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Exones / Factores de Empalme de ARN / Neuronas Idioma: En Revista: Nat Ecol Evol Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Exones / Factores de Empalme de ARN / Neuronas Idioma: En Revista: Nat Ecol Evol Año: 2019 Tipo del documento: Article