Terahertz-Field-Induced Time Shifts in Atomic Photoemission.
Phys Rev Lett
; 122(7): 073001, 2019 Feb 22.
Article
en En
| MEDLINE
| ID: mdl-30848607
Time delays for atomic photoemission obtained in streaking or reconstruction of attosecond bursts by interference of two-photon transitions experiments originate from a combination of the quantum mechanical Wigner time and the Coulomb-laser coupling. While the former was investigated intensively theoretically as well as experimentally, the latter attracted less interest in experiments and has mostly been subject to calculations. Here, we present a measurement of the Coulomb-laser coupling-induced time shifts in photoionization of neon at 59.4 eV using a terahertz (THz) streaking field (λ=152 µm). Employing a reaction microscope at the THz beamline of the free-electron laser in Hamburg (FLASH), we have measured relative time shifts of up to 70 fs between the emission of 2p photoelectrons (â¼38 eV) and low-energetic (<1 eV) photoelectrons. A comparison with theoretical predictions on Coulomb-laser coupling reveals reasonably good agreement.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2019
Tipo del documento:
Article