Your browser doesn't support javascript.
loading
Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in cis.
Sorrell, Fiona J; Kilian, Lena Marie; Elkins, Jonathan M.
Afiliación
  • Sorrell FJ; Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
  • Kilian LM; Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
  • Elkins JM; Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K. jon.elkins@sgc.ox.ac.uk.
Biochem J ; 476(7): 1037-1051, 2019 04 04.
Article en En | MEDLINE | ID: mdl-30858169
ABSTRACT
The group A p21-activated kinases (PAKs) exist in an auto-inhibited form until activated by GTPase binding and auto-phosphorylation. In the auto-inhibited form, a regulatory domain binds to the kinase domain (KD) blocking the binding of substrates, and CDC42 or Rac binding to the regulatory domain relieves this auto-inhibition allowing auto-phosphorylation on the KD activation loop. We have determined the crystal structure of the PAK3 catalytic domain and by small angle X-ray scattering, the solution-phase structures of full-length inactive PAK1 and PAK3. The structures reveal a compact but elongated molecular shape that demonstrates that, together with multiple independent biophysical measurements and in contrast with previous assumptions, group A PAKs are monomeric both before and after activation, consistent with an activation mechanism of cis-auto-inhibition and initial cis-auto-phosphorylation, followed by transient dimerisation to allow trans-auto-phosphorylation for full activation, yielding a monomeric active PAK protein.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Quinasas p21 Activadas Idioma: En Revista: Biochem J Año: 2019 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Quinasas p21 Activadas Idioma: En Revista: Biochem J Año: 2019 Tipo del documento: Article